Antioxidant activities from different parts of Sargassum polycystum thalli through ultrasound-assisted extraction (UAE) method

I Ketut Sumandiarsa, Nurul Hamida, Joko Santoso, Kustiariyah Tarman


Sargassum polycystum is well known as macroalgae that contain active compounds with great function as antioxidants. The antioxidants content of the seaweed has links closely to phenolic compounds. The study is aimed to determine active compound quality from different thalli parts of S. polycystum extracted by Ultra-sound-assisted extraction (UAE). Fresh samples were prepared into three parts, which are apical, middle, and base thallus. Extraction was carried out by ultrasonication method and using 90% acetone as solvent. Levels of total phenols were analyzed using the Reagent Folin-Ciocalteu. Antioxidant activities were analyzed using DPPH, FRAP, and CUPRAC methods. The highest total phenolic content was found at the apical of the thallus, about 875.64 mg GAE/g. The most excellent DPPH antioxidant activities in S. polycystum were found from the apical part of the thallus with an IC 50 value of 38.49 ppm. The FRAP and CUPRAC antioxidant’s capacity showed the highest in the apical part of the thallus, which was 989.93 mol Fe (II)/g and 555.52 µmol Trolox/g, respectively. The extraction results of different parts of the thallus show highly potent active compounds of alkaloids, steroids, phenols, flavonoids, and potent antioxidants activity.

Keywords: antioxidants, phytochemical, ultrasonication, S. polycystum


Full Text:



Abdala-Diaz, R. T. (2014). Intra-thallus variation of phenolic compounds, antioxidant activity, and phenolsulphatase activity in Cystoseira tamariscifolia (Phaeophyceae) from southern Spain. Ciencias Marinas, 40(1), 1–10.

Agbor, G. A., Vinson, J. A., & Donnelly, P. E. (2014). International Journal of Food Science , Nutrition and Dietetics ( IJFS ) ISSN 2326-3350 Folin-Ciocalteau Reagent for Polyphenolic Assay Description of Folin Ciocalteau Reagent. International Journal of Food Science, Nutrition and Dietetics, 3, 147–156.

Agregán, R., Munekata, P. E. S., Franco, D., Dominguez, R., Carballo, J., & Lorenzo, J. M. (2016). Phenolic compounds from three brown seaweed species using LC-DAD-ESI-MS/MS. Food Research International.

Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160(4), 413–419.

Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981.

Baek, S. H., Cao, L., Jeong, S. J., Kim, H. R., Nam, T. J., & Lee, S. G. (2021). The Comparison of Total Phenolics, Total Antioxidant, and Anti-Tyrosinase Activities of Korean Sargassum Species. Journal of Food Quality, 2021.

Baihakki;, Feliatra;, & Thamrin Wikanta. (2015). Extraction of polyphenol from. Jurnal Online Mahasiswa Fakultas Perikanan Dan Ilmu Kelautan Universitas Riau, 2(1), 1–12.

Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘“Antioxidant Power”’: The FRAP Assay. ANALYTICAL BIOCHEMISTRY, 239(31), 70–76.

Bertagnolli, C., Espindola, A. P. D. M., Kleinübing, S. J., Tasic, L., & Silva, M. G. C. Da. (2014). Sargassum filipendula alginate from Brazil: Seasonal influence and characteristics. Carbohydrate Polymers, 111, 619–623.

Bribi, N. (2018). Pharmacological activity of aporphinoid alkaloids. A review. Asian Journal of Botany, 1, 387–412.

Chen, B., Zou, D., Ma, Z., Yu, P., & Wu, M. (2019). Effects of light intensity on the photosynthetic responses of Sargassum fusiforme seedlings to future CO2 rising. Aquaculture Research, 50(1), 116–125.

Connan, S., Delisle, F., Deslandes, E., & Ar Gall, E. (2006). Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Botanica Marina, 49(1), 39–46.

Darmawati. (2012). Perubahan Sel Rumput Laut Kappaphycus alvarezii Yang Dibudidayakan Pada Kedalaman Berbeda. Octopus, 1(2), 65–69.

Dawes, C. (2016). Macroalgae Systematics. In Seaweed in Health and Disease Prevention. Elsevier Inc.

Diachanty, S., Nurjanah, N., & Abdullah, A. (2017). Antioxidant Activities of Various Brown Seaweeds from Seribu Islands. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2), 305.

Falleh, H., Ksouri, R., Lucchessi, M. E., Abdelly, C., & Magné, C. (2012). Ultrasound-assisted extraction: Effect of extraction time and solvent power on the levels of polyphenols and antioxidant activity of Mesembryanthemum edule L. Aizoaceae shoots. Tropical Journal of Pharmaceutical Research, 11(2), 243–249.

Gazali, M., Nurjanah, N., & Zamani, N. P. (2018). Eksplorasi Senyawa Bioaktif Alga Cokelat Sargassum sp. Agardh sebagai Antioksidan dari Pesisir Barat Aceh. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(1), 167.

Ginneken, V. Van. (2017). The photosynthetic system of seaweeds: the seaweed paradox. Asian Journal of Science and Technology, 8(11), 6567–6571.

Güven, K. C., Percot, A., & Sezik, E. (2010). Alkaloids in marine algae. Marine Drugs, 8(2), 269–284.

Hermund, D. B. (2018). Antioxidant Properties of Seaweed-Derived Substances. In Bioactive Seaweeds for Food Applications. Elsevier Inc.

Hernes, I. P. F., Suhendra, L., & Wrasiati, L. P. (2018). PENGARUH PERBANDINGAN BAHAN DENGAN PELARUT ASETON TERHADAP TOTAL FENOLIK, WARNA DAN KLOROFIL EKSTRAK Sargassum polycystum. Jurnal Rekayasa Dan Manajemen Agroindustri, 6(2), 103.

Johnson, M., Kanimozhi, S. A., Joy Jeba Malar, T. R., Shibila, T., Freitas, P. R., Tintino, S. R., Menezes, I. R. A., da Costa, J. G. M., & Coutinho, H. D. M. (2019). The antioxidative effects of bioactive products from Sargassum polycystum C. Agardh and Sargassum duplicatum J. Agardh against inflammation and other pathological issues. Complementary Therapies in Medicine, 46(July), 19–23.

Kadam, S. U., Álvarez, C., Tiwari, B. K., & O’Donnell, C. P. (2015). Extraction of biomolecules from seaweeds. In Seaweed Sustainability: Food and Non-Food Applications. Elsevier Inc.

Kadam, S. U., Tiwari, B. K., Smyth, T. J., & O’Donnell, C. P. (2015). Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrasonics Sonochemistry, 23, 308–316.

Kelman, D., Posner, E. K., McDermid, K. J., Tabandera, N. K., Wright, P. R., & Wright, A. D. (2012). Antioxidant activity of Hawaiian marine algae. Marine Drugs, 10(2), 403–416.

Kumar, R. G., Reddy, C. R. K., Ganesan, M., Thiruppathi, S., Dipakkore, S., Eswaran, K., Subba Rao, P. V., & Jha, B. (2004). Tissue culture and regeneration of thallus from callus of Gelidiella acerosa (Gelidiales, Rhodophyta). Phycologia, 43(5), 596–602.

Masojídek, J., Torzillo, G., & Koblízek, M. (2013). Photosynthesis in Microalgae. Handbook of Microalgal Culture: Applied Phycology and Biotechnology: Second Edition, April, 21–36.

Mehdinezhad, N., Ghannadi, A., & Yegdaneh, A. (2016). Phytochemical and biological evaluation of some Sargassum species from Persian Gulf. Research in Pharmaceutical Sciences, 11(3), 227–232.

Mekini?, I. G., Skroza, D., Šimat, V., Hamed, I., ?agalj, M., & Perkovi?, Z. P. (2019). Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules, 9(6).

Mittal, R., Tavanandi, H. A., Mantri, V. A., & Raghavarao, K. S. M. S. (2017). Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrasonics Sonochemistry, 38(February), 92–103.

Miyashita, K., Beppu, F., Hosokawa, M., Liu, X., & Wang, S. (2020). Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin. Archives of Biochemistry and Biophysics, 686(March), 1–10.

Molyneux P. (2004). The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating anti-oxidant activity. Songklanakarin Journal of Science and Technology, 26(May), 211–219.

Muraguri, E. N., Wakibia, J. G., & Kinyuru, J. N. (2016). Chemical Composition and Functional Properties of Selected Seaweeds from the Kenya Coast. Journal of Food Research, 5(6), 114.

Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006.

Nunes, N., Ferraz, S., Valente, S., Barreto, M. C., & Pinheiro de Carvalho, M. A. A. (2017). Biochemical composition, nutritional value, and antioxidant properties of seven seaweed species from the Madeira Archipelago. Journal of Applied Phycology, 29(5), 2427–2437.

Pangestuti, R., & Siahaan, E. A. (2018). Seaweed-Derived Carotenoids. In Bioactive Seaweeds for Food Applications. Elsevier Inc.

Perumal, B., Chitra, R., Maruthupandian, A., & Viji, M. (2019). Nutritional assessment and bioactive potential of sargassum polycystum c. agardh (brown seaweed). Indian Journal of Geo-Marine Sciences, 48(4), 492–498.

Praiboon, J., Palakas, S., Noiraksa, T., & Miyashita, K. (2018). Seasonal variation in nutritional composition and anti-proliferative activity of brown seaweed, Sargassum oligocystum. Journal of Applied Phycology, 30(1), 101–111.

Pramesti, R., Setyati, W. A., Pringgenies, D., & Zainuddin, M. (2019). Phenol Content and Antioxidative Activity in the Extract of Multiple Sargassum Species. Annals of Biological Sciences, 7(1), 7–15.

Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152–159.

Srivastava, V., McKee, L. S., & Bulone, V. (2017). Plant Cell Walls. ELS, July 2018, 1–17.

Sudhakar, M. P., Ananthalakshmi, J. S., & Nair, B. B. (2013). Extraction, purification and study on antioxidant properties of fucoxanthin from brown seaweeds. Journal of Chemical and Pharmaceutical Research, 5(7), 169–175.

Sumandiarsa, I. K., Bengen, D. G., Santoso, J., & Januar, H. I. (2021). Spatial-Temporal Effect on Proximate, Trace Elements , Alginate, and Fucoxanthin Contents, of Sargassum Polycystum Brown Seaweed. Journal of Hunan University Natural Scences, 48(5), 14.

Terasaki, M., Kawagoe, C., Ito, A., Kumon, H., Narayan, B., Hosokawa, M., & Miyashita, K. (2017). Spatial and seasonal variations in the biofunctional lipid substances (fucoxanthin and fucosterol) of the laboratory-grown edible Japanese seaweed (Sargassum horneri Turner) cultured in the open sea. Saudi Journal of Biological Sciences, 24(7), 1475–1482.

Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC - Trends in Analytical Chemistry, 71, 100–109.

Waller et al. (1978). Role of Alkaloids in 5 The. Role of Alkaloids in Plants, 143–144.

Widyartini, D. S., Widodo, P., & Susanto, A. B. (2017). Thallus variation of Sargassum polycystum from Central Java, Indonesia. Biodiversitas, 18(3), 1004–1011.

Wijesekara, I., Kim, S. K., Li, Y., & Li, Y. X. (2011). Phlorotannins as bioactive agents from brown algae. Process Biochemistry, 46(12), 2219–2224.

Wong, C.-L., Gan, S. Y., & Phang, S. M. (2004). Morphological and molecular characterisation and differentiation of Sargassum baccularia and S. polycystum (Phaeophyta). Journal of Applied Phycology, 16(6), 439–445.

Wong, K. H., & Cheung, P. C. K. (2001). Nutritional evaluation of some subtropical red and green seaweeds Part II. In vitro protein digestibility and amino acid profiles of protein concentrates. Food Chemistry, 72(1), 11–17.

Zailanie, K. ;, & Sukoso. (2014). Study on of Fucoxanthin Content and its Identification in Brown Algae from Padike Vilage Talango District, Madura Islands. Journal of Life Science and Biomedicine, 4(1), 1–3.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Lisensi Creative Commons

Omni-Akuatika de Fisheries and Marine Science Faculty - Jenderal Soedirman University est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

Fondé(e) sur une œuvre à
Les autorisations au-delà du champ de cette licence peuvent être obtenues à