Antioxidant activities from different parts of Sargassum polycystum thalli through ultrasound-assisted extraction (UAE) method
Abstract
Sargassum polycystum is well known as macroalgae that contain active compounds with great function as antioxidants. The antioxidants content of the seaweed has links closely to phenolic compounds. The study is aimed to determine active compound quality from different thalli parts of S. polycystum extracted by Ultra-sound-assisted extraction (UAE). Fresh samples were prepared into three parts, which are apical, middle, and base thallus. Extraction was carried out by ultrasonication method and using 90% acetone as solvent. Levels of total phenols were analyzed using the Reagent Folin-Ciocalteu. Antioxidant activities were analyzed using DPPH, FRAP, and CUPRAC methods. The highest total phenolic content was found at the apical of the thallus, about 875.64 mg GAE/g. The most excellent DPPH antioxidant activities in S. polycystum were found from the apical part of the thallus with an IC 50 value of 38.49 ppm. The FRAP and CUPRAC antioxidant’s capacity showed the highest in the apical part of the thallus, which was 989.93 mol Fe (II)/g and 555.52 µmol Trolox/g, respectively. The extraction results of different parts of the thallus show highly potent active compounds of alkaloids, steroids, phenols, flavonoids, and potent antioxidants activity.
Keywords: antioxidants, phytochemical, ultrasonication, S. polycystum
Full Text:
PDFReferences
Abdala-Diaz, R. T. (2014). Intra-thallus variation of phenolic compounds, antioxidant activity, and phenolsulphatase activity in Cystoseira tamariscifolia (Phaeophyceae) from southern Spain. Ciencias Marinas, 40(1), 1–10. https://doi.org/10.7773/cm.v40i1.2350
Agbor, G. A., Vinson, J. A., & Donnelly, P. E. (2014). International Journal of Food Science , Nutrition and Dietetics ( IJFS ) ISSN 2326-3350 Folin-Ciocalteau Reagent for Polyphenolic Assay Description of Folin Ciocalteau Reagent. International Journal of Food Science, Nutrition and Dietetics, 3, 147–156.
Agregán, R., Munekata, P. E. S., Franco, D., Dominguez, R., Carballo, J., & Lorenzo, J. M. (2016). Phenolic compounds from three brown seaweed species using LC-DAD-ESI-MS/MS. Food Research International. https://doi.org/10.1016/j.foodres.2017.03.043
Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160(4), 413–419. https://doi.org/10.1007/s00604-007-0777-0
Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981. https://doi.org/10.1021/jf048741x
Baek, S. H., Cao, L., Jeong, S. J., Kim, H. R., Nam, T. J., & Lee, S. G. (2021). The Comparison of Total Phenolics, Total Antioxidant, and Anti-Tyrosinase Activities of Korean Sargassum Species. Journal of Food Quality, 2021. https://doi.org/10.1155/2021/6640789
Baihakki;, Feliatra;, & Thamrin Wikanta. (2015). Extraction of polyphenol from. Jurnal Online Mahasiswa Fakultas Perikanan Dan Ilmu Kelautan Universitas Riau, 2(1), 1–12.
Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘“Antioxidant Power”’: The FRAP Assay. ANALYTICAL BIOCHEMISTRY, 239(31), 70–76. https://doi.org/10.1039/c6ay01739h
Bertagnolli, C., Espindola, A. P. D. M., Kleinübing, S. J., Tasic, L., & Silva, M. G. C. Da. (2014). Sargassum filipendula alginate from Brazil: Seasonal influence and characteristics. Carbohydrate Polymers, 111, 619–623. https://doi.org/10.1016/j.carbpol.2014.05.024
Bribi, N. (2018). Pharmacological activity of aporphinoid alkaloids. A review. Asian Journal of Botany, 1, 387–412. https://doi.org/10.63019/ajb.v1i2.467
Chen, B., Zou, D., Ma, Z., Yu, P., & Wu, M. (2019). Effects of light intensity on the photosynthetic responses of Sargassum fusiforme seedlings to future CO2 rising. Aquaculture Research, 50(1), 116–125. https://doi.org/10.1111/are.13873
Connan, S., Delisle, F., Deslandes, E., & Ar Gall, E. (2006). Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Botanica Marina, 49(1), 39–46. https://doi.org/10.1515/BOT.2006.005
Darmawati. (2012). Perubahan Sel Rumput Laut Kappaphycus alvarezii Yang Dibudidayakan Pada Kedalaman Berbeda. Octopus, 1(2), 65–69. https://journal.unismuh.ac.id/index.php/octopus/article/view/475
Dawes, C. (2016). Macroalgae Systematics. In Seaweed in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802772-1.00004-X
Diachanty, S., Nurjanah, N., & Abdullah, A. (2017). Antioxidant Activities of Various Brown Seaweeds from Seribu Islands. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2), 305. https://doi.org/10.17844/jphpi.v20i2.18013
Falleh, H., Ksouri, R., Lucchessi, M. E., Abdelly, C., & Magné, C. (2012). Ultrasound-assisted extraction: Effect of extraction time and solvent power on the levels of polyphenols and antioxidant activity of Mesembryanthemum edule L. Aizoaceae shoots. Tropical Journal of Pharmaceutical Research, 11(2), 243–249. https://doi.org/10.4314/tjpr.v11i2.10
Gazali, M., Nurjanah, N., & Zamani, N. P. (2018). Eksplorasi Senyawa Bioaktif Alga Cokelat Sargassum sp. Agardh sebagai Antioksidan dari Pesisir Barat Aceh. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(1), 167. https://doi.org/10.17844/jphpi.v21i1.21543
Ginneken, V. Van. (2017). The photosynthetic system of seaweeds: the seaweed paradox. Asian Journal of Science and Technology, 8(11), 6567–6571.
Güven, K. C., Percot, A., & Sezik, E. (2010). Alkaloids in marine algae. Marine Drugs, 8(2), 269–284. https://doi.org/10.3390/md8020269
Hermund, D. B. (2018). Antioxidant Properties of Seaweed-Derived Substances. In Bioactive Seaweeds for Food Applications. Elsevier Inc. https://doi.org/10.1016/b978-0-12-813312-5.00010-8
Hernes, I. P. F., Suhendra, L., & Wrasiati, L. P. (2018). PENGARUH PERBANDINGAN BAHAN DENGAN PELARUT ASETON TERHADAP TOTAL FENOLIK, WARNA DAN KLOROFIL EKSTRAK Sargassum polycystum. Jurnal Rekayasa Dan Manajemen Agroindustri, 6(2), 103. https://doi.org/10.24843/jrma.2018.v06.i02.p02
Johnson, M., Kanimozhi, S. A., Joy Jeba Malar, T. R., Shibila, T., Freitas, P. R., Tintino, S. R., Menezes, I. R. A., da Costa, J. G. M., & Coutinho, H. D. M. (2019). The antioxidative effects of bioactive products from Sargassum polycystum C. Agardh and Sargassum duplicatum J. Agardh against inflammation and other pathological issues. Complementary Therapies in Medicine, 46(July), 19–23. https://doi.org/10.1016/j.ctim.2019.06.014
Kadam, S. U., Álvarez, C., Tiwari, B. K., & O’Donnell, C. P. (2015). Extraction of biomolecules from seaweeds. In Seaweed Sustainability: Food and Non-Food Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-418697-2.00009-X
Kadam, S. U., Tiwari, B. K., Smyth, T. J., & O’Donnell, C. P. (2015). Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrasonics Sonochemistry, 23, 308–316. https://doi.org/10.1016/j.ultsonch.2014.10.007
Kelman, D., Posner, E. K., McDermid, K. J., Tabandera, N. K., Wright, P. R., & Wright, A. D. (2012). Antioxidant activity of Hawaiian marine algae. Marine Drugs, 10(2), 403–416. https://doi.org/10.3390/md10020403
Kumar, R. G., Reddy, C. R. K., Ganesan, M., Thiruppathi, S., Dipakkore, S., Eswaran, K., Subba Rao, P. V., & Jha, B. (2004). Tissue culture and regeneration of thallus from callus of Gelidiella acerosa (Gelidiales, Rhodophyta). Phycologia, 43(5), 596–602. https://doi.org/10.2216/i0031-8884-43-5-596.1
Masojídek, J., Torzillo, G., & Koblízek, M. (2013). Photosynthesis in Microalgae. Handbook of Microalgal Culture: Applied Phycology and Biotechnology: Second Edition, April, 21–36. https://doi.org/10.1002/9781118567166.ch2
Mehdinezhad, N., Ghannadi, A., & Yegdaneh, A. (2016). Phytochemical and biological evaluation of some Sargassum species from Persian Gulf. Research in Pharmaceutical Sciences, 11(3), 227–232.
Mekini?, I. G., Skroza, D., Šimat, V., Hamed, I., ?agalj, M., & Perkovi?, Z. P. (2019). Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules, 9(6). https://doi.org/10.3390/biom9060244
Mittal, R., Tavanandi, H. A., Mantri, V. A., & Raghavarao, K. S. M. S. (2017). Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrasonics Sonochemistry, 38(February), 92–103. https://doi.org/10.1016/j.ultsonch.2017.02.030
Miyashita, K., Beppu, F., Hosokawa, M., Liu, X., & Wang, S. (2020). Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin. Archives of Biochemistry and Biophysics, 686(March), 1–10. https://doi.org/10.1016/j.abb.2020.108364
Molyneux P. (2004). The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating anti-oxidant activity. Songklanakarin Journal of Science and Technology, 26(May), 211–219.
Muraguri, E. N., Wakibia, J. G., & Kinyuru, J. N. (2016). Chemical Composition and Functional Properties of Selected Seaweeds from the Kenya Coast. Journal of Food Research, 5(6), 114. https://doi.org/10.5539/jfr.v5n6p114
Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/c4ra13315c
Nunes, N., Ferraz, S., Valente, S., Barreto, M. C., & Pinheiro de Carvalho, M. A. A. (2017). Biochemical composition, nutritional value, and antioxidant properties of seven seaweed species from the Madeira Archipelago. Journal of Applied Phycology, 29(5), 2427–2437. https://doi.org/10.1007/s10811-017-1074-x
Pangestuti, R., & Siahaan, E. A. (2018). Seaweed-Derived Carotenoids. In Bioactive Seaweeds for Food Applications. Elsevier Inc. https://doi.org/10.1016/b978-0-12-813312-5.00005-4
Perumal, B., Chitra, R., Maruthupandian, A., & Viji, M. (2019). Nutritional assessment and bioactive potential of sargassum polycystum c. agardh (brown seaweed). Indian Journal of Geo-Marine Sciences, 48(4), 492–498.
Praiboon, J., Palakas, S., Noiraksa, T., & Miyashita, K. (2018). Seasonal variation in nutritional composition and anti-proliferative activity of brown seaweed, Sargassum oligocystum. Journal of Applied Phycology, 30(1), 101–111. https://doi.org/10.1007/s10811-017-1248-6
Pramesti, R., Setyati, W. A., Pringgenies, D., & Zainuddin, M. (2019). Phenol Content and Antioxidative Activity in the Extract of Multiple Sargassum Species. Annals of Biological Sciences, 7(1), 7–15.
Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152–159. https://doi.org/10.1016/S1360-1385(97)01018-2
Srivastava, V., McKee, L. S., & Bulone, V. (2017). Plant Cell Walls. ELS, July 2018, 1–17. https://doi.org/10.1002/9780470015902.a0001682.pub3
Sudhakar, M. P., Ananthalakshmi, J. S., & Nair, B. B. (2013). Extraction, purification and study on antioxidant properties of fucoxanthin from brown seaweeds. Journal of Chemical and Pharmaceutical Research, 5(7), 169–175.
Sumandiarsa, I. K., Bengen, D. G., Santoso, J., & Januar, H. I. (2021). Spatial-Temporal Effect on Proximate, Trace Elements , Alginate, and Fucoxanthin Contents, of Sargassum Polycystum Brown Seaweed. Journal of Hunan University Natural Scences, 48(5), 14.
Terasaki, M., Kawagoe, C., Ito, A., Kumon, H., Narayan, B., Hosokawa, M., & Miyashita, K. (2017). Spatial and seasonal variations in the biofunctional lipid substances (fucoxanthin and fucosterol) of the laboratory-grown edible Japanese seaweed (Sargassum horneri Turner) cultured in the open sea. Saudi Journal of Biological Sciences, 24(7), 1475–1482. https://doi.org/10.1016/j.sjbs.2016.01.009
Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC - Trends in Analytical Chemistry, 71, 100–109. https://doi.org/10.1016/j.trac.2015.04.013
Waller et al. (1978). Role of Alkaloids in 5 The. Role of Alkaloids in Plants, 143–144.
Widyartini, D. S., Widodo, P., & Susanto, A. B. (2017). Thallus variation of Sargassum polycystum from Central Java, Indonesia. Biodiversitas, 18(3), 1004–1011. https://doi.org/10.13057/biodiv/d180319
Wijesekara, I., Kim, S. K., Li, Y., & Li, Y. X. (2011). Phlorotannins as bioactive agents from brown algae. Process Biochemistry, 46(12), 2219–2224. https://doi.org/10.1016/j.procbio.2011.09.015
Wong, C.-L., Gan, S. Y., & Phang, S. M. (2004). Morphological and molecular characterisation and differentiation of Sargassum baccularia and S. polycystum (Phaeophyta). Journal of Applied Phycology, 16(6), 439–445. https://doi.org/10.1007/s10811-004-5504-1
Wong, K. H., & Cheung, P. C. K. (2001). Nutritional evaluation of some subtropical red and green seaweeds Part II. In vitro protein digestibility and amino acid profiles of protein concentrates. Food Chemistry, 72(1), 11–17. https://doi.org/10.1016/S0308-8146(00)00176-X
Zailanie, K. ;, & Sukoso. (2014). Study on of Fucoxanthin Content and its Identification in Brown Algae from Padike Vilage Talango District, Madura Islands. Journal of Life Science and Biomedicine, 4(1), 1–3. http://jlsb.science-line.com/
/
DOI: http://dx.doi.org/10.20884/1.oa.2022.18.2.907

This work is licensed under a Creative Commons Attribution 4.0 International License.
Omni-Akuatika by Fisheries and Marine Science Faculty - Jenderal Soedirman University is licensed under the Creative Commons Attribution 4.0 International License.