Nitrate, Phosphate, Silica and Phytoplankton Abundance in the Coastal Waters of Maitara Island, North Maluku

Mesrawaty Sabar, Ardan Samman, Salim Abubakar, Sunarti Sunarti, Rina Rina, Bahtiar Bahtiar

Abstract


Nitrate, phosphate, and silica are nutrients needed for the growth of phytoplankton populations. The primary objective of the present study was to establish the relationship between the nutrient composition (nitrate, phosphate, and silica) and phytoplankton abundance. Sampling was was conducted at three observation stations located in the tidal zone of Maitara Island coast, North Maluku. Collection of plankton samples in coastal waters using a 25 µm plankton net. Phytoplankton cells were identified and counted in the laboratory using an electric microscope with 100x magnification. Phytoplankton observations were carried out using the field of view method. Testing the concentration of nitrate, phosphate, and silica using spectrophotometer techniques. The research data were analyzed using a correlation test. The research findings indicated that the coastal waters surrounding Maitara Island were classified as oligotrophic waters, based on the nitrate and phosphate, and silica content. Oligotrophic waters have very low nutrient content such as nitrogen and phosphorus, causing low primary productivity. Simultaneously, nitrate, phosphate, and silica concentrations had a very strong correlation (R=0.823) with phytoplankton abundance. Partially, the correlation between nitrate concentration and phytoplankton abundance was classified as very strong (R=0.729). However, the correlation between phosphate concentration and phytoplankton abundance was moderately significant (R=0.577), and the correlation between silica concentration and phytoplankton abundance was weak (R=0.386). High concentrations of nitrate and phosphate in coastal waters lead to increased abundance of phytoplankton. However, high silica concentrations in waters can only increase the abundance of certain phytoplankton groups, for example diatoms and radiolarians.

 Keywords: Phytoplankton abundance, nitrate, phosphate, silica, Maitara Island


Full Text:

PDF

References


Abakumov, A. I., & Kozitskaya, I. S. (2023). Mathematical Model of Phytoplankton Interspecific Competition for Food Resource. Mathematical Biology and Bioinformatics, 18(12), 568–579. https://doi.org/10.17537/2023.18.568

Adharini, R. I., & Probosunu, N. (2021). Struktur Komunitas dan Kelimpahan Fitoplankton dan Zooplankton pada Musim Penghujan di Zona Intertidal Pantai Selatan Yogyakarta. Jurnal Kelautan Tropis, 24(2), 167–176. https://doi.org/10.14710/jkt.v24i2.10206

Adhiambo, R., Mensah, P. K., & Acheampong, E. (2023). Widespread Geographical Disparities in Phytoplankton Ecology Research in the Face of Climate Change: A Review. Water (Switzerland), 15(24). https://doi.org/10.3390/w15244288

Agus, E. L., Pribadi, R., & Subagiyo, S. (2019). Fluktuasi Fitoplankton pada Kawasan Konservasi Rajungan Perairan Betahwalang Demak. Jurnal Kelautan Tropis, 22(2), 191. https://doi.org/10.14710/jkt.v22i2.6296

Antoni, J. S., Almandoz, G. O., Ferrario, M. E., Hernando, M. P., Varela, D. E., Rozema, P. D., Buma, A. G. J., Paparazzo, F. E., & Schloss, I. R. (2020). Response of a natural Antarctic phytoplankton assemblage to changes in temperature and salinity. Journal of Experimental Marine Biology and Ecology, 532, 151444. https://doi.org/https://doi.org/10.1016/j.jembe.2020.151444

Armiani, S., & Harisanti, B. M. (2021). Hubungan Kemelimpahan Fitoplankton dengan Faktor Lingkungan di Perairan Pantai Desa Madayin Lombok Timur. Jurnal Pijar Mipa, 16(1), 75–80. https://doi.org/10.29303/jpm.v16i1.1862

Aryawati, R., Bengen, D. G., Prartono, T., & Zulkifli, H. (2017). Abundance of Phytoplankton In The Coastal Waters of South Sumatera. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 22(1), 31. https://doi.org/10.14710/ik.ijms.22.1.31-39

Ayu, D., Sari, P., Hutami, R. D., Azizi, A., & Fairus, S. (2019). Analysis of Water Quality Based On Phytoplankton Abundance And Number of Nutrients. Agricultural Science, 3(1), 57–72. http://agriscience.scientific-work.org/index.php/agriscience/article/view/33

Baird, R. B., Eaton, A. D., & Rice, E. W. (2017). Standard Methods for the Examination Water and Wastewater. In Standard Methods for the Examination of Water and Wastewater. https://yabesh.ir/wp-content/uploads/2018/02/Standard-Methods-23rd-Perv.pdf

Baksir, A., Akbar, N., Tahir, I., Haji, I., Ahmad, M., & Kotta, R. (2018). Struktur Komunitas Hutan Mangrove Di Pulau Sibu Kota Tidore Kepulauan Provinsi Maluku Utara. Jurnal Enggano, 3(2), 178–196. https://doi.org/10.31186/jenggano.3.2.178-196

Bell, D. W., Pellechia, P. J., Ingall, E. D., & Benitez-Nelson, C. R. (2020). Resolving marine dissolved organic phosphorus (DOP) composition in a coastal estuary. Limnology and Oceanography, 65(11), 2787–2799. https://doi.org/https://doi.org/10.1002/lno.11552

Carstensen, J., Klais, R., & Cloern, J. E. (2015). Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species. Estuarine, Coastal and Shelf Science, 162, 98–109. https://doi.org/https://doi.org/10.1016/j.ecss.2015.05.005

Çelekli, A., Öztürk, B., & Kap?, M. (2014). Relationship between phytoplankton composition and environmental variables in an artificial pond. Algal Research, 5, 37–41. https://doi.org/https://doi.org/10.1016/j.algal.2014.05.002

Chang, C. W., Miki, T., Ye, H., Souissi, S., Adrian, R., Anneville, O., Agasild, H., Ban, S., Be’eri-Shlevin, Y., Chiang, Y. R., Feuchtmayr, H., Gal, G., Ichise, S., Kagami, M., Kumagai, M., Liu, X., Matsuzaki, S. I. S., Manca, M. M., Nõges, P., Hsieh, C. hao. (2022). Causal networks of phytoplankton diversity and biomass are modulated by environmental context. Nature Communications, 13(1), 1–11. https://doi.org/10.1038/s41467-022-28761-3

Davis, C. C. (1955). The marine and fresh-water plankton. Michigan State Univ. In Ann Arbor. xi. Michigan State University.

Effendi, H. (2007). Telaah Kualitas Air Bagi Pengelolaan Sumber Daya dan Lingkungan Perairan (5th ed.). Kanisus. http://bit.ly/2Dsjkj6

Eppley, R. W., Renger, E. H., & Harrison, W. G. (1979). Nitrate and phytoplankton production in southern California coastal waters. Limnology and Oceanography, 24(3), 483–494. https://doi.org/10.4319/lo.1979.24.3.0483

Firdaus, M., Hatanaka, K., & Saville, R. (2021). Mangrove forest restoration by fisheries communities in lampung bay: A study based on perceptions, willingness to pay, and management strategy. Forest and Society, 5(2), 224–244. https://doi.org/10.24259/fs.v5i2.12008

Fitriyah, A., Zainuri, M., & Indriyawati, N. (2021). Hubungan Nitrat Terhadap Kelimpahan Fitoplankton Pada Saat Air Pasang di Muara Ujung Piring, Bangkalan. Prosiding Seminar Nasional Hasil Penelitian Pertanian, Perikanan Dan Kelautan, 8–13. https://ilmukelautan.trunojoyo.ac.id/wp-content/uploads/2022/05/Fitriyah-et-al.pdf

Flynn, K. J., Kimmance, S. A., Clark, D. R., Mitra, A., Polimene, L., & Wilson, W. H. (2021). Modelling the Effects of Traits and Abiotic Factors on Viral Lysis in Phytoplankton. Frontiers in Marine Science, 8(May), 1–23. https://doi.org/10.3389/fmars.2021.667184

Friesen, S. D., Dunn, C., & Freeman, C. (2018). Decomposition as a regulator of carbon accretion in mangroves: a review. Ecological Engineering, 114, 173–178. https://doi.org/https://doi.org/10.1016/j.ecoleng.2017.06.069

George, B., Nirmal Kumar, J. I., & Kumar, R. N. (2012). Study on the influence of hydro-chemical parameters on phytoplankton distribution along Tapi estuarine area of Gulf of Khambhat, India. The Egyptian Journal of Aquatic Research, 38(3), 157–170. https://doi.org/https://doi.org/10.1016/j.ejar.2012.12.010

Glibert, P. M., Wilkerson, F. P., Dugdale, R. C., Raven, J. A., Dupont, C. L., Leavitt, P. R., Parker, A. E., Burkholder, J. M., & Kana, T. M. (2016). Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnology and Oceanography, 61(1), 165–197. https://doi.org/10.1002/lno.10203

Hornung, M. (1999). The Role of Nitrates in the Eutrophication and Acidification of Surface Waters. In W. S. Wilson, A. S. Ball, & R. H. Hinton (Eds.), Managing Risks of Nitrates to Humans and the Environment (pp. 155–174). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845693206.155

Inomura, K., Pierella Karlusich, J. J., Dutkiewicz, S., Deutsch, C., Harrison, P. J., & Bowler, C. (2023). High Growth Rate of Diatoms Explained by Reduced Carbon Requirement and Low Energy Cost of Silica Deposition. Microbiology Spectrum, 11(3), 1–11. https://doi.org/10.1128/spectrum.03311-22

Jewson, D. H. (1992). Size reduction, reproductive strategy and the life cycle of a centric diatom. Philosophical Transactions - Royal Society of London, B, 336(1277), 191–213. https://doi.org/10.1098/rstb.1992.0056

Jiashun, L., Kaidian, Z., Ling, L., Yujie, W., & Senjie, L. (2023). Phosphorus nutrition strategies in a symbiodiniacean species: Implications in coral-alga symbiosis facing increasing phosphorus deficiency in future warmer oceans. National Natural Science Foundation of China, 5061. https://doi.org/https://doi.org/10.5061/dryad.k98sf7md2

Kalinina, V., Berdieva, M., Aksenov, N., & Skarlato, S. (2023). Phosphorus deficiency induces sexual reproduction in the dinoflagellate Prorocentrum cordatum. Scientific Reports, 13(1), 14191. https://doi.org/10.1038/s41598-023-41339-3

Kamruzzaman, M., Basak, K., Paul, S. K., Ahmed, S., & Osawa, A. (2019). Litterfall production, decomposition and nutrient accumulation in Sundarbans mangrove forests, Bangladesh. Forest Science and Technology, 15(1), 24–32. https://doi.org/10.1080/21580103.2018.1557566

Lin, S., Litaker, R. W., & Sunda, W. G. (2016). Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. Journal of Phycology, 52(1), 10–36. https://doi.org/https://doi.org/10.1111/jpy.12365

Liqoarobby, R., Sunardi, Suparman, Y., & Fadilah, K. (2021). Aqueous Systems of Dissolved Oxygen in Reservoir. E3S Web of Conferences, 249, 1–4. https://doi.org/10.1051/e3sconf/202124903015

Liu, X., Li, Y., Shen, R., Zhang, M., & Chen, F. (2022). Reducing nutrient increases diatom biomass in a subtropical eutrophic lake, China–Do the ammonium concentration and nitrate to ammonium ratio play a role? Water Research, 218, 118493. https://doi.org/https://doi.org/10.1016/j.watres.2022.118493

Makareviciute-Fichtner, K., Matthiessen, B., Lotze, H. K., & Sommer, U. (2024). Nutrient enrichment alters phytoplankton biomass and composition via silicon limitation. Frontiers in Marine Science, 11(March), 1–12. https://doi.org/10.3389/fmars.2024.1289768

Martiny, A. C., Hagstrom, G. I., DeVries, T., Letscher, R. T., Britten, G. L., Garcia, C. A., Galbraith, E., Karl, D., Levin, S. A., Lomas, M. W., Moreno, A. R., Talmy, D., Wang, W., & Matsumoto, K. (2022). Marine phytoplankton resilience may moderate oligotrophic ecosystem responses and biogeochemical feedbacks to climate change. Limnology and Oceanography, 67(S1), S378–S389. https://doi.org/10.1002/lno.12029

Matus-Hernández, M. Á., Martínez-Rincón, R. O., Aviña-Hernández, R. J., & Hernández-Saavedra, N. Y. (2019). Landsat-derived environmental factors to describe habitat preferences and spatiotemporal distribution of phytoplankton. Ecological Modelling, 408, 108759. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2019.108759

Meirinawati, H., & Muchtar, M. (2017). Fluktuasi Nitrat, Fosfat dan Silikat di Perairan Pulau Bintan. Jurnal Segara, 13(3), 141–148. https://doi.org/10.15578/segara.v13i3.6493

Muhammad, M., Khairunnisa, K., & Musafira, F. (2023). Analisis Kesuburan Perairan Di Krueng Geukuh , Aceh Utara Berdasarkan Sebaran Nitrat dan Fosfat Terhadap Kelimpahan Fitoplankton. Jurnal Kelautan Dan Perikanan Indonesia, 3(2), 66–78. http://jurnal.unsyiah.ac.id/JKPI

Mulyadi, Ulqodry, T. Z., Aryawati, R., Isnaini, & Surbakti, H. (2019). The characteristic of phytoplankton distribution at Sugihan Estuary, South Sumatera. Jurnal Kelautan Tropis, 22(1), 19–26. https://doi.org/10.14710/jkt.v22i1.3178

Naselli-Flores, L., & Padisák, J. (2023). Ecosystem services provided by marine and freshwater phytoplankton. Hydrobiologia, 850(12–13), 2691–2706. https://doi.org/10.1007/s10750-022-04795-y

Nurmalitasari, M., & Sudarsono, S. (2023). Keanekaragaman Plankton Dan Tingkat Produktivitas Primer Antara Dua Musim Di Perairan Kabupaten Bantul. Kingdom (The Journal of Biological Studies), 9(1), 16–34. https://doi.org/10.21831/kingdom.v9i1.18156

Oktaviana, C. I., Muskananfola, M. R., & Purnomo, P. W. (2023). Analisis Kesuburan Perairan Berdasarkan Klorofil-a, Nitrat dan Ortofosfat di Pantai Pasir Putih Wates, Kaliori, Rembang. Life Science, 12(1), 40–51. https://journal.unnes.ac.id/sju/index.php/LifeSci

Paiki, K., & Kalor, J. D. (2017). Distribusi Nitrat Dan Fosfat Terhadap Kelimpahan Fitoplankton Di Peraiaran Pesisir Yapen Timur. JFMR-Journal of Fisheries and Marine Research, 1(2), 65–71. https://doi.org/10.21776/ub.jfmr.2017.001.02.3

Palit, K., Rath, S., Chatterjee, S., & Das, S. (2022). Microbial diversity and Ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. Environmental Science and Pollution Research, 29(22), 32467–32512. https://doi.org/10.1007/s11356-022-19048-7

Patty, S. I., Arfah, H., & Abdul, M. S. (2015). Zat Hara (Fosfat, Nitrat), Oksigen Terlarut dan pH Kaitannya Dengan Kesuburan di Perairan Jikumerasa, Pulau Buru. Jurnal Pesisir Dan Laut Tropis, 3(1), 43. https://doi.org/10.35800/jplt.3.1.2015.9578

Rahmah, N., Zulfikar, A., & Apriadi, T. (2022). Kelimpahan Fitoplankton dan Kaitannya dengan Beberapa Parameter Lingkungan Perairan di Estuari Sei Carang Kota Tanjungpinang. Journal of Marine Research, 11(2), 189–200. https://doi.org/10.14710/jmr.v11i2.32945

Rahmatiza, Y., Lase, Y., & Yulmila. (2020). Keanekaragaman Benthos Di Perairan Pantai Kaca Kacu Deudap Pulo Aceh, Kabupaten Aceh besar. Prosiding Seminar Nasional Biotik 2020, 218–221.

Roflin, E., & Zulvia, F. E. (2021). Kupas Tuntas Analisis Korelasi. Penerbit NEM. https://books.google.co.id/books?id=SAc7EAAAQBAJ

Roy Chowdhury, P., Banerjee, M., & Petrovskii, S. (2024). A two-timescale model of plankton–oxygen dynamics predicts formation of oxygen minimum zones and global anoxia. Journal of Mathematical Biology, 89(1), 1–34. https://doi.org/10.1007/s00285-024-02107-7

Sabar, M., Irfan, M., Nursanti, Samman, A., Salim, F. D., & Bahtiar. (2023). Penyuluhan Pelestarian Ekosistem Lamun (Seagrass) pada Masyarakat Pantai Kastela, Pulau Ternate Counseling. Aquana Jurnal Pengabdian Kepada Masyarakat, 4(1), 18–24. http://aquana.ulm.ac.id/index.php/aquana/article/view/58/50

Sabar, M., Samman, A., Serosero, R. H., & Kadir, M. A. (2022). Kerapatan Jenis Mangrove dan Dinamika Nitrat ( NO 3 ) pada Sedimen di Pulau Manomadehe, Kecamatan Jailolo Selatan, Kabupaten Halmahera Barat. Agrikan - Jurnal Agribisnis Perikanan, 15(2), 370–380. https://doi.org/10.52046/agrikan.v15i2.1216

Safitri, A., Zayadi, H., Si, S., Si, M., Laili, I. S., & Si, M. (2023). Hubungan Keanekaragaman Fitoplankton Dengan Kandungan Nitrat dan Fosfat di Sungai Bluru Kecamatan Buduran Kabupaten Sidoarjo The Relationship between Phytoplankton Diversity and Nitrate and Phosphate Content in the Bluru River , Buduran District , Sidoarj. E-Jurnal Ilmiah Mahasiswa Sains UNISMA Malang (JIMSUM), 1(2), 74–83. https://jim.unisma.ac.id/index.php/jimsum/article/viewFile/22571/16862

Sanjuan-Delmás, D., Josa, A., Muñoz, P., Gassó, S., Rieradevall, J., & Gabarrell, X. (2020). Applying nutrient dynamics to adjust the nutrient-water balance in hydroponic crops. A case study with open hydroponic tomato crops from Barcelona. Scientia Horticulturae, 261, 108908. https://doi.org/https://doi.org/10.1016/j.scienta.2019.108908

Saxena, A., Tiwari, A., Kaushik, R., Iqbal, H. M. N., & Parra-Saldívar, R. (2021). Diatoms recovery from wastewater: Overview from an ecological and economic perspective. Journal of Water Process Engineering, 39, 101705. https://doi.org/https://doi.org/10.1016/j.jwpe.2020.101705

Simanjuntak, M. (2012). Kualitas Air Laut Ditinjau Dari Aspek Zat Hara, Oksigen Terlarut Dan pH Di Perairan Banggai, Sulawesi Tengah. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 4(2), 290–303. https://media.neliti.com/media/publications/102686-ID-none.pdf

Tilahun, A. B., Dürr, H. H., Schweden, K., & Flörke, M. (2024). Perspectives on total phosphorus response in rivers: Examining the influence of rainfall extremes and post-dry rainfall. Science of The Total Environment, 940, 173677. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.173677

Tomas, C. R. (1997). Identifying marine phytoplankton. Elsevier.

Widayanti, T. F., Irfan, A. M., Djafar, E. M., Hakim, M. Z., Muin, A. M., Ratnawati, Riza, M., & Aswan, M. (2023). The Role of the Biological Diversity Convention in Mangroves Rehabilitation in Indonesia. IOP Conference Series: Earth and Environmental Science, 1181(1), 0–10. https://doi.org/10.1088/1755-1315/1181/1/012006

Wohlgemuth, R. (2023). Advances in the Synthesis and Analysis of Biologically Active Phosphometabolites. International Journal of Molecular Sciences, 24(4), 2–29. https://doi.org/10.3390/ijms24043150

Xiaohua, Z., Shuang, C., Zhengquan, G., Yulin, C., Qingshou, Y., Jiayang, Q., Xiangyong, L., & Senjie, L. (2023). Transcriptomics and physiological analyses unveil the distinct mechanisms of ATP and glucose-6-phosphate utilization in Phaeodactylum tricornutum. Frontiers in Marine Science, 10(May), 1–11. https://doi.org/10.3389/fmars.2023.1163189

Xu, S., Liu, Y., Fan, J., Xiao, Y., Qi, Z., & Lakshmikandan, M. (2022). Impact of salinity variation and silicate distribution on phytoplankton community composition in Pearl River estuary, China. Ecohydrology & Hydrobiology, 22(3), 466–475. https://doi.org/https://doi.org/10.1016/j.ecohyd.2022.01.004

Yuliana, Adiwilaga, E. M., Harris, E., & Pratiwi, N. T. M. (2012). Hubungan Antara Kelimpahan Fitoplankton Dengan Parameter Fisik-Kimiawi Perairan Di Teluk Jakarta. Jurnal Akuatika, 3(2), 169–179.

Zhang, Z., Zhou, M., Zhong, Y., Zhang, G., Jiang, S., Gao, Y., Zhang, R., & Smith, W. O. (2020). Spatial variations of phytoplankton biomass controlled by river plume dynamics over the lower changjiang estuary and adjacent shelf based on high-resolution observations. Frontiers in Marine Science, 7(October), 1–17. https://doi.org/10.3389/fmars.2020.587539




DOI: http://dx.doi.org/10.20884/1.oa.2024.20.2.1147

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Lisensi Creative Commons

Omni-Akuatika by Fisheries and Marine Science Faculty - Jenderal Soedirman University is licensed under the Creative Commons Attribution 4.0 International License