The Utilization of Native Freshwater Mussel Pilsbryoconcha exilis as Biocontrol of Pathogenic Bacteria Aeromonas hydrophila in Tilapia Aquaculture
Abstract
This research aims to evaluate the capacity of freshwater mussel Pilsbryoconcha exilis as a biocontrol agent to prevent the transmission of Aeromonas hydrophila in tilapia cultivation. Briefly, 10 tilapia fish with average bodyweight 7,88±0,25 g were subjected to four treatments in the 8-liter aquarium with three replications in a randomized design trial. The treatments were M1 (one mussel for a two-liter of water), M2 (two mussels for a two-liter of water), and two control treatments without mussel ( M+ and M-). All treatments, except the M-, then challenged by adding A. hydrophila live culture to obtain a final density of 105 CFU mL-1 into the aquarium for 7 days duration. The final survival rate of fish, the water-total bacterial count, and the blood profile of animals were assessed. The research revealed that there is a significant impact from the presence of freshwater mussel on tilapia cultivation. Generally, the M2 treatment showed better results with a significant different (P<0,05) according to the survival rate of fish (100±0,00%), water-total bacterial count (4,53±0,03 log CFU mL-1), and fish leucocytes (4,30±0,70x104 cell mm-3). Nonetheless, there was no different (P>0,05) effect on fish erythrocytes among the treatments. Therefore, the feeding activity of freshwater mussel in the water column able to deplete pathogenic bacteria abundance and prevent pathogen transmission along with increasing the survival rate of fish.
Full Text:
PDFReferences
Austin B, Austin DA. 2007. Bacterial Fish Pathogens. The disease of Farmed and Wild Fish. 4th Edition. Chichester (UK): Praxis Publishing.
Ben-Horin T, Bidegain G, Huey L,. Narvaez DA, Bushek D. 2015. Parasite transmission through suspension feeding. Journal of Invertebrate Pathology 131:155–176. DOI: https://doi.org/10.1016/j.jip.2015.07.006
Brown N, Eddy S, Plaud S. 2011. Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virens. Aquaculture 322-323: 177–183. DOI: https://doi.org/10.1016/j.aquaculture.2011.09.017
Burge, C.A, Collin J. Closek, Carolyn S. Friedman, Maya L. Groner, Cody M. Jenkins, Amanda Shore-Maggio, Jennifer E. Welsh, 2016. The Use of Filter-feeders to Manage Disease in a Changing World, Integrative and Comparative Biology. 56 (4): 573–587. DOI: https://doi.org/10.1093/icb/icw048
Chopin, T., Buschmann, A.H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G.P.,Zertuche-González, J.A., Yarish, C., Neefus, C., 2001. Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J. Phycol. 37, 975–986. DOI: https://doi.org/10.1046/j.1529-8817. 2001.01137.x
Citarasu T, Dhas KA, Velmurugan S, Viji VT, Kumaran T, Babu M, Selvaraj T. 2011. Isolation of Aeromonas hydrophila from infected ornamental fish hatchery during massive disease outbreak. International journal of current research. 2(1):37-41.
Desrina, Verreth J.A.J, Prayitno S.B, Rombout J.H.W.M., Vlak J.M., Verdegem M.C.J. 2013. Replication of white spot syndrome virus (WSSV) in the polychaete Dendronereis spp. Journal of Invertebrate Pathology. 114: 7–10. DOI: https://doi.org/10.1016/j.jip.2013.05.002
Hardi EH, Pebrianto CA, Hidayanti T, Handayani RT. 2014. Infeksi Aeromonas hydrophila melalui jalur yang berbeda pada ikan nila (Oreochromis niloticus) di Loa Kulu Kutai Kartanegara Kalimantan Timur. Jurnal Kedokteran Hewan. 8(2): 130-133. DOI: https://doi.org/10.21157/j.ked.hewan.v8i2.2632
Henriksson, P. J. G., Rico, A., Troell, M., klinger, D. H., Buschmann, A. H., Saksida, S., … Zhang, W. (2017). Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustainability Science, 13(4), 1105–1120. DOI: https://doi.org/10.1007/s11625-017-0511-8
Joyni MJ, Kurup BM, Avnimelech Y. 2011. Bioturbation as a possible means for increasing production and improving pond soil characteristics in shrimp-fish brackish water ponds. Aquaculture 318 : 464–470. DOI: https://doi.org/10.1016/j.aquaculture.2011.05.019
Maftuch, Nursyam H, Sukarni. 2011. Kajian Penggunaan Ciprofloxacin terhadap hematologi ikan botia (Botia macracanthus, Bleeker). J. Exp. Life Sci. 2(2):65-69. DOI: http://dx.doi.org/10.21776/ub.jels.2012.002.02.02
Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157,2893-2902. DOI: https://doi.org/10.1016/j.envpol.2009.05.051
McConnachie SH. âŽ, Guselle NJ, Speare DJ. 2013. Retention of viable microsporidial (Loma salmonae) spores within the blue mussel (Mytilus edulis): Use of an experimental laboratory model probing pathogen transfer within a multi-trophic aquaculture setting. Aquaculture 376-379:1–5. DOI: https://doi.org/10.1016/j.aquaculture.2012.10.028
Molloy S D, Pietrak M R , Bouchard D A, Bricknell I. 2011. Ingestion of Lepeophtheirus salmonis by the blue mussel Mytilus edulis. Aquaculture 311 : 61–64. DOI: https://doi.org/10.1016/j.aquaculture.2010.11.038
Othman F, Islam MS, Sharifah EN, Harrison FS, Hassan A. 2015. Biological control of streptococcal infection in nile tilapia Oreochromis nilocitus (Linnaeus, 1758) using filter-feeding bivalve mussel (Pilsbryoconcha exilis) (Lea, 1838). J. App. Ichthyol. 31:724-728.
Pietrak M.R., Molloy, S.D., Bouchard, D.A., Singer, J.T., Bricknell, I., 2012. Potential role of Mytilus edulis in modulating the infectious pressure of Vibrio anguillarum 02ß on an integrated multi-trophic aquaculture farm. Aquaculture 326-329, 36-39. DOI: https://doi.org/10.1016/j.aquaculture.2011.11.024
Räihä, V., Sundberg, L., Ashrafi, R., Hyvärinen, P., & Karvonen, A. (2019). Rearing background and exposure environment together explain higher survival of aquaculture fish during a bacterial outbreak. Journal of Applied Ecology. DOI: DOI: https://doi.org/10.1111/1365-2664.13393
Rolin C , Graham J, McCarthy U, Martin S.A.M, Matejusova I. 2016. Interactions between Paramoeba perurans, the causative agent of amoebic gill disease, and the blue mussel, Mytilus edulis. Aquaculture 456:1–8. DOI: https://doi.org/10.1016/j.aquaculture.2016.01.019
Rosidah, Lili W, Iskandar, Afpriliansyah MR. 2018. Efektivitas daun kersen untuk pengobatan benih ikan nila yang terinfeksi bakteri Aeromonas hydrophila. Jurnal Akuatika Indonesia. 3(1):10-18.
Sukenda Jamal L, Wahjuningrum D, Hasan A. 2008. Penggunaan kitosan untuk pencegahan infeksi Aeromonas hydrophila pada ikan lele dumbo Clarias sp. Jurnal Akuakultur Indonesia. 7(2):159-169. DOI: https://doi.org/10.19027/jai.7.159-169
Tantu W, Tumbol RA, Longdong SNJ. 2013. Deteksi keberadaan bakteri Aeromonas sp. pada ikan nila yang dibudidayakan di karamba jaring apung Danau Tondano. Budidaya Perairan. 1(3):74-80
Webb JL, Vandenbor J, Pirie B, Robinson S.M.C. , Cross SF. Jones S.R.M, Pearce CM. 2013. Effects of temperature, diet, and bivalve size on the ingestion of sea lice (Lepeophtheirus salmonis) larvae by various filter-feeding shellfish. Aquaculture 406–407 : 9–17. DOI: https://doi.org/10.1016/j.aquaculture.2013.04.010
DOI: http://dx.doi.org/10.20884/1.oa.2019.15.2.761

This work is licensed under a Creative Commons Attribution 4.0 International License.
Omni-Akuatika by Fisheries and Marine Science Faculty - Jenderal Soedirman University is licensed under the Creative Commons Attribution 4.0 International License.