Investigating Influencing Factors of Shoreline Changes in Bantul's Tourist Coastal Areas Using GIS and Satellite Data

Buddin Al Hakim, Destianingrum Prabawardani, Tjahjono Prijambodo, Nugraheni Setyaningrum, Andung Bayu Sekaranom, Eki Aurora Shakyra

Abstract


The littoral zone is the most vulnerable area to the impacts of climate change and human activities. Current weather anomalies and the development of human activities in coastal areas are on the rise. Remote sensing and geographic information system approaches have been widely used to monitor shoreline changes using easily accessible satellite imagery. This study aims to identify the dominant factors driving littoral change at Bantul Beach and assess the relationship between tourism activity and coastal abrasion. This study uses the Geographic Information System (GIS) analysis method using Landsat-8 satellite imagery from 2013 to 2023. In monitoring shoreline changes, NDWI and DSAS analyses were conducted to identify factors influencing coastal changes. A study was also conducted to examine the parameters of the coastal profile, wind, waves, tides, and human activities. Based on 10 years of image data, the study location has generally experienced high abrasion, with an average EPR value of -1.51 m/year, an average SCE value of 47 meters, and a dominant negative NSM value. The most influential factors are the slope of the shoreline and waves, especially during high waves or storms. The increase in the number of tourists in Bantul Yogyakarta tourism spots is not linearly correlated to the occurrence of abrasion. There needs to be coastal protection and mitigation that prioritizes the dominant factors causing abrasion, utilizing a soft engineering approach and local wisdom.

Keywords: Shoreline changes, Tourist Coastal Areas, DSAS, Landsat-8, Bantul Yogyakarta


Full Text:

PDF

References


Alwi, M., Mutaqin, B. W., & Marfai, M. A. (2023). Shoreline Dynamics in the Very Small Islands of Karimunjawa – Indonesia: A Preliminary Study. Geoplanning: Journal of Geomatics and Planning, 10(1), 73–82. https://doi.org/10.14710/geoplanning.10.1.73-82

Angra, D., & Sapountzaki, K. (2022). Climate Change Affecting Forest Fire and Flood Risk—Facts, Predictions, and Perceptions in Central and South Greece. Sustainability, 14(20). https://doi.org/10.3390/su142013395

Benkhattab, F. Z., Hakkou, M., Bagdanavi?i?t?, I., Mrini, A. El, Zagaoui, H., Rhinane, H., & Maanan, M. (2020). Spatial–temporal analysis of the shoreline change rate using automatic computation and geospatial tools along the Tetouan coast in Morocco. Natural Hazards, 104(1), 519–536. https://doi.org/10.1007/s11069-020-04179-2

Biondo, M., Buosi, C., Trogu, D., Mansfield, H., Vacchi, M., Ibba, A., Porta, M., Ruju, A., & De Muro, S. (2020). Natural vs. Anthropic influence on the multidecadal shoreline changes of mediterranean urban beaches: Lessons from the gulf of cagliari (sardinia). Water (Switzerland), 12(12). https://doi.org/10.3390/w12123578

BNPB. (2023). Data Bencana Indonesia. Pusat Data Informasi Dan Komunikasi Kebencanaan (Pusdatinkom), Badan Nasional Penanggulangan Bencana (BNPB). https://dibi.bnpb.go.id/

BPS. (2023). Kabupaten Bantul Dalam Angka 2023. https://doi.org/0215-5184

Burck, J., Nascimento, L., Breevoort, P. Van, & Tavares, M. (2023). 2024 Climate Change performance Index. Results. Monitoring Climate Mitigation Efforts of 63 Countries plus the EU-covering more than 90% of the Global Greenhouse Gas Emissions.

Bushra, N., Mostafiz, R. Bin, Rohli, R. V, Friedland, C. J., & Rahim, M. A. (2021). Technical and Social Approaches to Study Shoreline Change of Kuakata, Bangladesh. Frontiers in Marine Science, Volume 8-. https://doi.org/10.3389/fmars.2021.730984

Chaudhary, M. T., & Piracha, A. (2021). Natural Disasters—Origins, Impacts, Management. Encyclopedia, 1(4), 1101–1131. https://doi.org/10.3390/encyclopedia1040084

Chettiyam Thodi, M. F., Gopinath, G., Surendran, U. P., Prem, P., Al-Ansari, N., & Mattar, M. A. (2023). Using RS and GIS Techniques to Assess and Monitor Coastal Changes of Coastal Islands in the Marine Environment of a Humid Tropical Region. Water, 15(21). https://doi.org/10.3390/w15213819

Darwish, K., & Smith, S. (2023). Landsat-Based Assessment of Morphological Changes along the Sinai Mediterranean Coast between 1990 and 2020. Remote Sensing, 15(5). https://doi.org/10.3390/rs15051392

Dionísio António, S., van der Werf, J., Horstman, E., Cáceres, I., Alsina, J., van der Zanden, J., & Hulscher, S. (2023). Influence of Beach Slope on Morphological Changes and Sediment Transport under Irregular Waves. Journal of Marine Science and Engineering, 11(12). https://doi.org/10.3390/jmse11122244

Elallati, S., Ben Harra, A., Bouhadi, A., Falouss, S., Khali Issa, L., Raissouni, A., & El Arrim, A. (2024). The Evolution of Kariat Arekmane Coast (Province of Nador-Morocco) Diachronic Study and Evaluation of Proposed Solutions. Lecture Notes in Networks and Systems, 931 LNNS, 148–158. https://doi.org/10.1007/978-3-031-54288-6_14

Fatkhuroyan, F., & Wijayanto, B. (2020). Identifikasi Angin Silang (Cross Wind) di Sekitar New Yogyakarta International Airport Memakai Plot Wind Rose. Prosiding SNFA (Seminar Nasional Fisika Dan Aplikasinya), 5, 67–77. https://doi.org/10.20961/prosidingsnfa.v5i0.46595

Gopinath, G., Thodi, M. F. C., Surendran, U., Prem, P., Parambil, J. N., Alataway, A., Al-Othman, A. A., Dewidar, A. Z., & Mattar, M. A. (2023). Long-Term Shoreline and Islands Change Detection with Digital Shoreline Analysis Using RS Data and GIS. Water, 15(2), 244. https://doi.org/10.3390/w15020244

Gumara, M. I., & Meilianda, E. (2024). Study of Shoreline Changes Due to Tidal Flood at Coastal City of Meulaboh. E3S Web of Conferences, 476. https://doi.org/10.1051/e3sconf/202447601010

Hadi, S. P. (2018). Integrated Community Based Coastal Management: Lesson from the Field. IOP Conference Series: Earth and Environmental Science, 116(1). https://doi.org/10.1088/1755-1315/116/1/012064

Hakim, B. Al, Wibowo, M., Kongko, W., Irfani, M., Hendriyono, W., & Gumbira, G. (2015). Hydrodynamics Modeling of Giant Seawall in Semarang Bay. Procedia Earth and Planetary Science, 14, 200–207. https://doi.org/10.1016/j.proeps.2015.07.102

Hakim, B. A., Kustiyanto, E., Cholisoh, E., Airawati, M. N., Wibawa, B., Susilo, Y. S., & Asharo, R. K. (2022). Assessing Environmental Physics: Tidal Flood Impact with Multidiscipline Approach (Case Study Coastal Cities Semarang Indonesia). Journal of Physics: Conference Series, 2377(1). https://doi.org/10.1088/1742-6596/2377/1/012059

Hendriyono, W., Wibowo, M., Hakim, B. Al, & Istiyanto, D. C. (2015). Modeling of Sediment Transport Affecting the Coastline Changes due to Infrastructures in Batang - Central Java. Procedia Earth and Planetary Science, 14, 166–178. https://doi.org/10.1016/j.proeps.2015.07.098

Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., & Farris, A. S. (2021). Digital Shoreline Analysis System ( DSAS ) Version 5.1 User Guide: U.S. Geological Survey Open-File Report 2021–1091. U.S. Geological Survey, 104. https://doi.org/10.3133/ofr20211091

Kabupaten Bantul. (2023). Satu Data Bantul. Diskominfo@bantulkab.Go.Id. https://data.bantulkab.go.id/

Kahraman, S., & Polat, E. (2023). Spatial Reflections of Hydro-Meteorological Disasters in Antalya; [Hidro-Meteorolojik Kaynakl? Afetlerin Antalya’daki Mekânsal Yans?malar?]. Journal of Disaster and Risk, 6(2), 510 – 534. https://doi.org/10.35341/afet.1208036

Kim, T.-K., Lim, C., & Lee, J.-L. (2021). Vulnerability Analysis of Episodic Beach Erosion by Applying Storm Wave Scenarios to a Shoreline Response Model. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.759067

Malawani, M. N., Marfai, M. A., Hadmoko, D. S., Putra, M. D., Setyawan, N., Prakosa, S. H., Mardiyanto, M., Widagdo, B., Yoga, A. G. H., Sasongko, M. H. D., & Handayani, T. (2019). Respons Wilayah Pesisir Terhadap Gelombang Pasang Akibat Siklon Di Daerah Istimewa Yogyakarta. Majalah Ilmiah Globe, 21(2), 87. https://doi.org/10.24895/mig.2019.21-2.953

Mörner, N.-A., & Finkl, C. W. (2019). Coastal Erosion BT - Encyclopedia of Coastal Science (C. W. Finkl & C. Makowski (eds.); pp. 444–451). Springer International Publishing. https://doi.org/10.1007/978-3-319-93806-6_373

Natih, N. M. N., Pasaribu, R. A., Sangadji, M. S., & Kusumaningrum, E. E. (2020). Study on shoreline changes using Landsat imagery in Sangsit Region, Bali Province. IOP Conference Series: Earth and Environmental Science, 429(1), 12059. https://doi.org/10.1088/1755-1315/429/1/012059

Nazeer, M., Waqas, M., Shahzad, M. I., Zia, I., & Wu, W. (2020). Coastline vulnerability assessment through landsat and cubesats in a coastal mega city. Remote Sensing, 12(5), 1–24. https://doi.org/10.3390/rs12050749

Oo, Y. H., Vieira da Silva, G., & Zhang, H. (2023). Storm sequence chronology and initial profile morphology controls on beach erosion. Applied Ocean Research, 130, 103431. https://doi.org/https://doi.org/10.1016/j.apor.2022.103431

Patel, K., Jain, R., Kalubarme, M. H., & Bhatt, T. (2024). Coastal erosion monitoring using multi-temporal remote sensing and sea surface temperature data in coastal districts of Gujarat state, India. Geology, Ecology, and Landscapes, 8(2), 194–207. https://doi.org/10.1080/24749508.2022.2127648

Paul, S., Mishra, M., Guria, R., Pati, S., Baraj, B., da Silva, R. M., & Santos, C. A. G. (2024). A multi-temporal analysis of shoreline dynamics influenced by natural and anthropogenic factors: Erosion and accretion along the Digha Coast, West Bengal, India. Marine Pollution Bulletin, 200, 116089. https://doi.org/10.1016/j.marpolbul.2024.116089

Portz, L. C., Pérez Torres, Y. S., & Manzolli, R. P. (2023). Coast Change: Understanding Sensitivity to Beach Loss for Coastal Tourism in the Colombian Caribbean. Sustainability, 15(18). https://doi.org/10.3390/su151813903

Pratama, D. N. D., Khakhim, N., Wicaksono, A., Musthofa, A., & Lazuardi, W. (2021). Spatio-temporal analysis of abrasion susceptibility effect on land cover in the coastal area of Bantul regency, Yogyakarta, Indonesia. International Journal of Geoinformatics, 17(4), 109–126. https://doi.org/10.52939/ijg.v17i4.1961

Rijnsdorp, D. P., Smit, P. B., & Guza, R. T. (2022). A nonlinear, non-dispersive energy balance for surfzone waves: infragravity wave dynamics on a sloping beach. Journal of Fluid Mechanics, 944, A45. https://doi.org/10.1017/jfm.2022.512

Risandi, J., Hansen, J. E., Lowe, R. J., & Rijnsdorp, D. P. (2020). Shoreline Variability at a Reef-Fringed Pocket Beach. Frontiers in Marine Science, 7(June), 1–16. https://doi.org/10.3389/fmars.2020.00445

Saleem, A., & Awange, J. L. (2019). Coastline shift analysis in data deficient regions: Exploiting the high spatio-temporal resolution Sentinel-2 products. CATENA, 179, 6–19. https://doi.org/https://doi.org/10.1016/j.catena.2019.03.023

Shroder, J. F., Paron, P., & Baldassarre, G. Di. (2023). Hydro-Meteorological Hazards, Risks, and Disasters. In Hydro-Meteorological Hazards, Risks, and Disasters. https://doi.org/10.1016/C2018-0-05038-0

Sui, L., Wang, J., Yang, X., & Wang, Z. (2020). Spatial-Temporal Characteristics of Coastline Changes in Indonesia from 1990 to 2018. Sustainability, 12(8). https://doi.org/10.3390/su12083242

Tillekaratne, H. I., Jayawardena, I. M. S. P., Basnayaka, V., Rathnayake, U., Werellagama, I., Herath, S., Nianthi, K. W. G. R., Madduma-Bandara, C. M., & Bandara, T. W. M. T. W. (2023). Hydro-Meteorological Disaster Incidents and Associated Weather Systems in Sri Lanka. Journal of Environmental Informatics Letters, 10(2), 89 – 103. https://doi.org/10.3808/jeil.202300119

W. Adi, A., Shalih, O., Shabrina, F. Z., Rizqi, A., Putra, A. S., Karimah, R., Eveline, F., Alfian, A., Syauqi, Septian, R. T., Widiastono, Y., Bagaskoro, Y., Dewi, A. N., Rahmawati, I., Seniarwan, Suryaningrum, H. A., Purnamasiwi, D. I., & Puspasari, T. J. (2023). IRBI (Indeks Risiko Bencana Indonesia). 01, 1–338.

WFP. (2022). Impact Monitoring of Hydrometeorological Hazards INDONESIA (Issue Juli-September (Q3) 2022). http://www.wfp.org/

Zikra, M., Suntoyo, & Lukijanto. (2015). Climate Change Impacts on Indonesian Coastal Areas. Procedia Earth and Planetary Science, 14, 57–63. https://doi.org/10.1016/j.proeps.2015.07.085




DOI: http://dx.doi.org/10.20884/1.oa.2025.21.1.1154

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Lisensi Creative Commons

Omni-Akuatika by Fisheries and Marine Science Faculty - Jenderal Soedirman University is licensed under the Creative Commons Attribution 4.0 International License