Analysis of Influence of Cyclone Seroja on Wave Height and Tide in the Indian Ocean
Abstract
Tropical Cyclone Seroja, which occurred in the Indian Ocean, was characterized by maximum wind speeds of 70 knots. As part of the impact assessment associated with the cyclone, wave height observations were conducted along its track and tidal examinations were carried out at Cape Cuvier and Kupang tidal stations. Therefore, this research aims to analyze the relationship between wind speed and wave height, as well as the impact of Cyclone Seroja on waves and tide. The results showed that Cyclone Seroja reached a very high intensity with maximum wind speeds of 70 knots and maximum wave height of 14.24 meters on April 11, 2021, at 06:00 UTC. Regression analysis showed an R-squared value of 0.716, indicating that 71.6% of the variation in wave height can be explained by wind speed. The correlation value of 0.846 indicated a strong relationship between wind speed and wave height. This research also analyzed the changes in residual tide height at Cape Cuvier tidal station on April 11, 2021, with a maximum residual height of 0.57 meters. Wave height propagation from wave station 1487 significantly influenced the residual tide value at Cape Cuvier, with wave height of 11.790 meters and a propagation speed of 40.42 km/h. At Kupang tidal station, there was a residual height change of up to 0.27 meters, caused by influence of low pressure around wave station 239, with an average pressure of 1001 pHa and an average wave height of 3.89 meters, propagating towards the Kupang tidal station during the formation phase of Tropical Cyclone Seroja.
Keywords: Cyclone; Seroja; Wave; Tide; Indian Ocean.
Full Text:
PDFReferences
Avrionesti, Khadami, F., & Purnaningtyas, D. W. (2021). Ocean Response to Tropical Cyclone Seroja at East Nusa Tenggara Waters. IOP Conference Series: Earth and Environmental Science, 925(1). https://doi.org/10.1088/1755-1315/925/1/012045
Baranowski, D. B., Flatau, M. K., Flatau, P. J., Karnawati, D., Barabasz, K., Labuz, M., Latos, B., Schmidt, J. M., Paski, J. A. I., & Marzuki. (2020). Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16171-2
Bevans, R. (2020). Simple Linear Regression | An Easy Introduction & Examples. Scribbr.
Earl-Spurr, C. (2022). Severe Weather Environmental Prediction Services. http://www.bom.gov.au/cyclone/history/pdf/Seroja2021_Report.pdf
Gogtay, N. J., & Thatte, U. M. (2017). Principles of correlation analysis. Journal of Association of Physicians of India, 65(MARCH).
Habibie, M. N., & Fitria, W. (2019). Kajian Indeks Variabilitas Tinggi Gelombang Signifikan Di Indonesia. Jurnal Segara, 14(3). https://doi.org/10.15578/segara.v14i3.6650
Ilia, A., & O’Donnell, J. (2018). An assessment of two models of wave propagation in an estuary protected by breakwaters. Journal of Marine Science and Engineering, 6(4). https://doi.org/10.3390/jmse6040145
Jannatunnisa, L., & Trismidianto. (2022). Analysis of Multi-scale Meteorological Parameter Triggering Seroja Tropical Cyclone and Its Effect on Extreme Rainfall Over Nusa Tenggara Timur. Springer Proceedings in Physics, 275. https://doi.org/10.1007/978-981-19-0308-3_58
Klotzbach, P. J., Chan, J. C. L., Fitzpatrick, P. J., Frank, W. M., Landsea, C. W., & McBride, J. L. (2017). The science of William M. Gray: His contributions to the knowledge of tropical meteorology and tropical cyclones. Bulletin of the American Meteorological Society, 98(11). https://doi.org/10.1175/BAMS-D-16-0116.1
Kurniawan, R., & Budi, Y. (2016). Analisis Regresi Dasar dan Penerapannya dengan R. In Kencana (Vol. 2, Issue 2).
Kurniawan, R., Harsa, H., Nurrahmat, M. H., Sasmito, A., Florida, N., Makmur, E. E. S., Swarinoto, Y. S., Habibie, M. N., Hutapea, T. F., Hendri, Sudewi, R. S., Fitria, W., Praja, A. S., & Adrianita, F. (2021). The Impact of Tropical Cyclone Seroja to the Rainfall and Sea Wave Height in East Nusa Tenggara. IOP Conference Series: Earth and Environmental Science, 925(1). https://doi.org/10.1088/1755-1315/925/1/012049
Kurniawan, R., & Najib Habibie, M. (2011). Variasi Bulanan Gelombang Laut di (Indonesia Monthly Ocean Waves Variation Over Indonesia). Jurnal Meteorologi Dan Geofisika, 12(3).
Latos, B., Peyrillé, P., Lefort, T., Baranowski, D. B., Flatau, M. K., Flatau, P. J., Riama, N. F., Permana, D. S., Rydbeck, A. V., & Matthews, A. J. (2023). The role of tropical waves in the genesis of Tropical Cyclone Seroja in the Maritime Continent. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-36498-w
Liufandy, H., Sugianto, D. N., Pranowo, W. S., Setiyadi, J., & Rochaddi, B. (2022). Simulasi Numerik Dampak Badai George dan Jacob (2007) Terhadap Tinggi Gelombang Signifikan pada Laut Selatan Jawa Hingga Nusa Tenggara. Jurnal Chart Datum, 8(1). https://doi.org/10.37875/chartdatum.v8i1.224
Makmur, E. E. S., Fitria, W., Praja, A. S., Rahayu, S. P., Pratama, B. E., Sudewi, R. S. S., Harsa, H., Kurniawan, R., Hutapea, T. D. F., Habibie, M. N., Paski, J. A. I., Nurrahmat, M. H., Swarinoto, Y. S., Sasmito, A., & Riama, N. F. (2021). Strengthening the Early Detection and Tracking of Tropical Cyclones near Indonesian Waters. IOP Conference Series: Earth and Environmental Science, 925(1). https://doi.org/10.1088/1755-1315/925/1/012010
McInnes, K. L., Hoeke, R. K., Walsh, K. J. E., O’Grady, J. G., & Hubbert, G. D. (2016). Application of a synthetic cyclone method for assessment of tropical cyclone storm tides in Samoa. Natural Hazards, 80(1). https://doi.org/10.1007/s11069-015-1975-4
Ningsih, N. S., Hanifah, F., Tanjung, T. S., Yani, L. F., & Al Azhar, M. (2020). The effect of tropical cyclone nicholas (11–20 february 2008) on sea level anomalies in indonesian waters. Journal of Marine Science and Engineering, 8(11). https://doi.org/10.3390/jmse8110948
Perawiska, E., & Adriat, R. (2018). Analisis Unsur Cuaca Pada Saat Kejadian Siklon Tropis Haiyan Menggunakan Model Wrf (Weather Research And Forecasting). Prisma Fisika , VI(2).
Sani, L. F., & Marzuki. (2015). Pengaruh Badai Tropis Haiyan Terhadap Pola Hujan Di Indonesia. In Jurnal Fisika Unand (Vol. 4, Issue 2).
Senthilnathan, S. (2019). Usefulness of Correlation Analysis. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3416918
Serway, R. Y., & Jewett, J. W. (2008). Física para ciencias e ingeniería con física moderna II. In Physics For Scientists (7th ed.). Cengage Learning Editores.
Sofiati, I., & Putranto, M. F. (2020). The analysis of tropical cyclones that occurred in the southern sea of Java during the period 2004-2019 and their effects on sea-atmospheric conditions. IOP Conference Series: Earth and Environmental Science, 572(1). https://doi.org/10.1088/1755-1315/572/1/012032
Susandi, A., Pratama, A. F., & Wijaya, A. R. (2023). An Overview of Extreme Storm Trends in Java Island using Storm Severity Index (SSI). IOP Conference Series: Earth and Environmental Science, 1165(1), 012048. https://doi.org/10.1088/1755-1315/1165/1/012048
Syaifullah, M. D. (2015). Siklon Tropis, Karasteristik Dan Pengaruhnya Di Wilayah Indonesia Pada Tahun 2012. Jurnal Sains & Teknologi Modifikasi Cuaca, 16(2), 61. https://doi.org/10.29122/jstmc.v16i2.1048
TCWC. (2021). Ocean, Gale, and Storm Warning For Area 0 – 10 S, 90 – 125 E. https://web.archive.org/web/20210404161936/https://www.wis-jma.go.jp/d/o/WIIX/Alphanumeric/Warning/Tropical_cyclone/20210404/153900/A_WTID01WIIX041539_C_RJTD_20210404154216_12.txt
Uyan?k, G. K., & Güler, N. (2013). A Study on Multiple Linear Regression Analysis. Procedia - Social and Behavioral Sciences, 106. https://doi.org/10.1016/j.sbspro.2013.12.027
Ventusky. 2024. Weather prediction and meteorological data visualisation. (last accesed 2024/01/28).
DOI: http://dx.doi.org/10.20884/1.oa.2024.20.1.1114
This work is licensed under a Creative Commons Attribution 4.0 International License.
Omni-Akuatika by Fisheries and Marine Science Faculty - Jenderal Soedirman University is licensed under the Creative Commons Attribution 4.0 International License.