The Characteristics Of The Mixed Layer Depth During La Niña, El Niño, And Normal Years In The North Natuna Sea

Tri Aji, Tri Aji, Widodo Setiyo Pranowo, Nuki Widi Asmoro, Agustinus Agustinus, Muhammad Azis Kurniawan, Amri Rahmatullah

Abstract


The Natuna Sea is one of the seas located in the northern part of Indonesia, which is influenced by several oceanographic climate phenomena, including the El Nino-Southern Oscillation (ENSO) system, such as La Nina and El Nino, which cause vertical temperature dynamics. This study aims to examine the relationship between La Nina, El Nino, and normal years on the variability of the mixed layer depth in the Natuna Sea. The study utilizes temperature data from the World Ocean Database (WOD) and Marine Copernicus for a period of 3 years, including years with La Nina, El Nino, and normal conditions, as well as mixed layer depth (defined by sigma theta) data from Marine Copernicus. The occurrence of La Nina, El Nino, and normal years is obtained from the Southern Oscillation Index (SOI). The research findings indicate a correlation between the SOI values and the Maximum Mixed Layer Depth (MLD) during weak and very weak El Nino and La Nina conditions, while the correlation is weak during normal years. During the La Nina, normal, and El Nino periods, the deepest MLD occurs during the west monsoon season at depths ranging from 7 to 60 meters. The shallowest MLD occurs during the first transition season at depths ranging from 7 to 25 meters. The MLD values during the east monsoon season range from 7 to 43 meters, and during the second transition season, the MLD ranges from 7 to 44 meters.


Full Text:

PDF

References


Abdullah, M. (2015). "Metodologi Penelitian Kuantitatif. Aswaja Pressindo .

Afriyudi, A. (2022). Prediksi jumlah siswa baru dengan menggunakan metode exponential smoothing studi kasus: SMK Ethika palembang. Bina Darma Conference on Computer Science, 237-244.

Aldrian, E., & Susanto, R. D. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol, vol. 23, no. 12.

Amalia, A. R., Wirasatriya, A., & Widiaratih, R. (2023). Analysis ENSO of Mixed layer Depth Variability in Maluku Seas. Indonesian Journal of Oceanography, 5(1), 36-42.

Ardhitama, A., & Sholihah , R. (2013). MODEL SIMULASI PRAKIRAAN CH BULANAN PADA WILAYAH RIAU DENGAN MENGGUNAKAN INPUT DATA SOI, SST, NINO 3.4, DAN IOD. Jurnal Sains & Teknologi Modifikasi Cuaca, 14(2), 95-104.

Boedi, T. (2017). Hubungan indeks osilasi selatan dan indeks curah hujan terhadap kejadian kekeringan di Kabupaten Indramayu, Jawa Barat, Indonesia. . Journal of Regional and Rural Development Planning (Jurnal Perencanaan Pembangunan Wilayah dan Perdesaan), 1(1), 64-73.

BOM. (2023, Januari 29). SOI. Diambil kembali dari www.bom.gov.au: http://www.bom.gov.au/climate/enso/soi/

Fahlevi, M. R., Bayhaqi, A., Sugianto, D. N., Fadli, M., Wang, H., Susanto, R. D., & Wouthuyzen , S. (2022, Oktober,). Karakteristik Massa Air di Selat Sunda dan Perairan Lepasnya. Buletin Oseanografi Marina, hal. 11(3), 231-24.

Gogtay, N. J., & Thatte , U. (2017). MPrinciples of correlation analysis. Journal of Association of Physicians of India, 65(MARCH).

Haiyqal, S. V., Ismanto, A., Indrayanti, E., & Andrianto, R. (2023). Karakteristik Tinggi Gelombang Laut pada saat Periode Normal, El Niño dan La Niña di Selat Makassar. Jurnal Kelautan Tropis, 26(1), 190-202.

Hao, J. (2012). Seasonal thermocline in the China Seas and northwestern Pacific Ocean. Journal of Geophysical Research, Oceans, 117(C2).

Hariyadi, H. (2021). Natuna Off-Shelf Current (NOC) Vertical Variability and Its Relation to ENSO in the North Natuna Sea. . Ilmu Kelautan, 26 (2).

Hermialingga, S., Purwiyanto, A. S., & Iskandar, I. (2018). Analisis Pemodelan Data Pasang Surut Menggunakan Model TPXO 7.1 di Pelabuhan Tanjung Priok, Jakarta Utara . Jurnal Kelautan Nasional., 15(2):85-90.

Hidayat, A. M., Efendi , U., Agustina, L., & Winars. (2018). KORELASI INDEKS NINO 3.4 DAN SOUTHERN OSCILLATION INDEX (SOI) DENGAN VARIASI CURAH HUJAN DI SEMARANG. Jurnal Sains & Teknologi Modifikasi Cuaca, 19(2).

Hutabarat, M. F. (2018). Variabilitas lapisan termoklin terhadap kenaikan mixed layer depth (MLD) di Selat Makassar. . Jurnal Perikanan Kelautan, 9(1).

Kurniawan, R., & Budi, Y. (2016). Analisis Regresi Dasar dan Penerapannya dengan R. Kencana, Vol. 2, Issue 2.

Maisyarah, S. (2019). The Effect of the ENSO on the Variability of SST and Chlorophyll-a in the South China Sea. In IOP Conference Series: Earth and Environmental Science, (hal. Vol246,).

marine.copernicus. (2023, januari 29). product/GLOBAL_ANALYSISFORECAST_PHY_001_024/description. Diambil kembali dari .marine.copernicus.eu/: https://data.marine.copernicus.eu/

Mujiasih, S. (2023). Identification of eddy-induced chlorophyll in the Northeastern Natuna Sea. In IOP Conference Series: Earth and Environmental Science (hal. Vol. 1137, No. 1, p. 012008). IOP Publishing.

NOAA. (2023, April 23). nino-3-4-enso-index-explain. Diambil kembali dari pmel.noaa.gov: https://www.pmel.noaa.gov/elnino/nino-3-4-enso-index-explain

Nofiyanti, K. (2017). KAJIAN KEDALAMAN MIXED LAYER DAN TERMOKLIN. JURNAL OSEANOGRAFI. Volume 6,, Nomor 1, Halaman 131 – 143.

Peng, H. (2018). Analysis of monthly variability of thermocline in the South China Sea. Journal of Oceanology and Limnology, 36(2), 205-215.

Ramdhan, M. (2022). Pendugaan Alur Sungai Purba di Laut Natuna Utara: Assessment of Primordial River Flow in North Natuna Sea. . Jurnal Hidropilar, , 8(1), 47-52.

Safitri, S. (. (2015 ). El Nino, La Nina Dan Dampaknya Terhadap Kehidupan Di Indonesia. Criksetra: ,Jurnal Pendidikan Sejarah, 4(2).

Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A Dipole Mode in theTropical I ndi an Ocea n. J. Nature, 401: 360-363.

Schlitzer, R. (2020). Ocean Data View. http://www.awibremer haven.de/geo/odv.

Sidabutar, H. C. (2014). Kajian lapisan termoklin di perairan utara Jayapura. Journal of Oceanography , 3(2), 135-141.

Susanto, R. D., Gordon, A. L., & Zheng, Q. (2001). .Upwelli ng Al ong t he Co ast of Java N S umatr aN Its Relatio n to ENSO. J. GeophysicalResearch Lette rs, 28(8): 1599-1602.

Thompson, B., & Tkalich, P. (2014). Mixed layer thermodynamics of the Southern South China Sea. Climate dynamics, 43, 2061-2075.

Tubulawony, S. (2007). Dinamika Massa Air Lapisan Ekman Perairan Selatan JawaSumbawa Selama Muson Tenggara. . Jurnal Torani, 18: 148-159.

Uyan?k, G. K., & Güler , N. (2013). A Study on Multiple Linear Regression Analysis. Procedia - Social and Behavioral Sciences, 106.

Wijesekera, H. W., & Gregg, M. C. (1996.). Surface layer response to weak winds, westerly bursts, and rain squalls in the western Pacific Warm Pool. . Journal of Geophysical Research: , Oceans, 101(C1), 977-997.

Wyrtki, K. (1961). Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959-1961, Naga Report, 2. La Jolla, California: University of California.




DOI: http://dx.doi.org/10.20884/1.oa.2023.19.2.1089

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Lisensi Creative Commons

Omni-Akuatika de Fisheries and Marine Science Faculty - Jenderal Soedirman University est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

Fondé(e) sur une œuvre à www.ojs.omniakuatika.net.
Les autorisations au-delà du champ de cette licence peuvent être obtenues à www.ojs.omniakuatika.net.