Germ Cells and Gonadal Development in a Teleost, Osteochilus vittatus (Valenciennes, 1842) Exposed to Potassium Dichromate

Sharon Hillary, Hernayanti Hernayanti, Gratiana Ekaningsih Wijayanti

Abstract


Potassium dichromate, K2Cr2O7, is a well-known heavy metal, commonly used as an oxidizing and tanning agent in industrial applications. Prolonged or repeated exposure of hexavalent chromium is deemed very toxic for aquatic biota, with long lasting effect. This substance induce damage to DNA and tissue structures, as well as disruption of survival and growth rate. The present research exposed Osteochilus vittatus in larval and juvenile stages, to varying concentration of K2Cr2O7. This experiment was aimed to evaluate the effect of chromium on primordial germ cells (PGCs) and subsequently, to the subject gonadal development. The evaluation was based on paraffin-embedded section, stained with Haematoxylin-Eosin. K2Cr2O7 of 2.5 and 5 ppm were applied to four crucial developmental stages; post-hatching larvae, 1-month, 2-months, and 3-months juvenile, for 30 days. There was a consistent pattern in all test subject, in which higher concentration of K2Cr2O7 resulted in lower PGCs number and delayed gonadal appearance. Our results suggested that sublethal Cr exposure to larval stage potentially decrease PGCs and thus, hinder the formation of gonad. Regulation of Cr-containing waste disposal should be issued in near future, to prevent further damage on local freshwater fish.

Keywords: Chromium, Cyprinids, Juvenile, Larvae, PGC


Full Text:

PDF

References


Bakshi, A., & Panigrahi, A. K. (2018). A comprehensive review on chromium induced alterations in fresh water fishes. In Toxicology Reports (Vol. 5, pp. 440–447). Elsevier Inc. https://doi.org/10.1016/j.toxrep.2018.03.007

Braat,A.K., Johanna E. Speksnijder And Danica Zivkovic. 1999. Germline development in fish. Int. J. Dev. Biol. 43: 745-760

Ebrahimi, M., & Taherianfard, ; (n.d.). The effects of heavy metals exposure on reproductive systems of cyprinid fish from Kor River. In Iranian Journal of Fisheries Sciences (Vol. 10, Issue 1).

Eimon, P. M., & Ashkenazi, A. (2010). The zebrafish as a model organism for the study of apoptosis. In Apoptosis (Vol. 15, Issue 3, pp. 331–349). https://doi.org/10.1007/s10495-009-0432-9

Guo, Y., Y. Wang & B. Huang (2020) The acute toxicity effects of hexavalent chromium in antioxidant system and gonad development to male clam Geloina coaxans, The European Zoological Journal, 87:1, 325-335, DOI: 10.1080/24750263.2020.1775318

Hasan, V., Soemarno, Widodo, M. S., & Wiadnya, D. G. R. (2019). First record of Osteochilus vittatus (Cypriniformes: Cyprinidae) in Madura Island, Indonesia. AACL Bioflux, 12(1), 338–342.

Hao W., He, L., Pei, Y., Chu, P., Huang, R., Li, Y., Liao, L., Zhu, Z. & Wang, Y.. (2016). Cloning and characterization of Bax1 and Bax2 genes of Ctenopharyngodon idellus and evaluation of transcript expression in response to grass carp reovirus infection. Fish Physiology and iochemistry 42:1369–1382

Jan, M., Jan, N., Correspondence Muddasir Jan, I., & Muddasir Jan, K. (2017). Studies on the fecundity (F), gonadosomatic index (GSI) and hepatosomatic index (HSI) of Salmo trutta fario (Brown trout) at Kokernag trout fish farm. 170 ~ International Journal of Fisheries and Aquatic Studies, 5(6), 170–173. www.fisheriesjournal.com

Jannah, I. N., & Muhimmatin, I. (2019). Pengelolaan Limbah Cair Industri Batik menggunakan Mikroorganisme di Kecamatan Cluring Kabupaten Banyuwangi. Warta Pengabdian, 13(3), 106–115. https://doi.org/10.19184/wrtp.v13i3.12262

Jin, Y., Liu, Z., Liu, F., Ye, Y., Peng, T., & Fu, Z. (2015). Embryonic exposure to cadmium (II) and chromium (VI) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio). Neurotoxicology and Teratology, 48, 9–17. https://doi.org/10.1016/j.ntt.2015.01.002

Jorgensen A, Morthorst JE, Andersen O, Rasmussen LJ, & Bjerregaard P. (2008). Expression profiles for six zebrafish genes during gonadal sex differentiation. Reprod Biol Endocrinol 6:25.

Katz, S. A., & Salem, H. (1993). The Toxicology of Chromium with Respect to its Chemical Speciation: a Review. In Journal of Applied Toxicology (Vol. 13, Issue 3).

Khillare, K. (2017). Effect of Chromium on Reproductive System of Fresh Water Fish Labeo Rohita. World Journal of Pharmacy and Pharmaceutical Sciences, 647–656. https://doi.org/10.20959/wjpps20177-9226

Lakhani, S.A., Ali Masud, Keisuke Kuida, George A. Porter Jr., Carmen J. Booth, Wajahat Z. Mehal, Irteza Inayat, and Richard A. Flavell (2006). Caspases 3 and 7: Key Mediators of Mitochondrial Events of Apoptosis Science. 311(5762): 847–851. doi:10.1126/science.1115035.

Lawrence, C., Best, J., James, A., and Maloney, K.. (2012) The effects of feeding frequency on growth and reproduction in zebrafish (Danio rerio). Aquaculture. 368-369: 103-108. https://doi.org/10.1016/j.aquaculture.2012.09.022

Lestari, S., Dewi, R. S., Wibowo, E. S., & Atang. (2020). Modified Tea Bag Biosorbent as Cr (VI) Removal in Batik Wastewater. IOP Conference Series: Earth and Environmental Science, 593(1), 012030. https://doi.org/10.1088/1755-1315/593/1/012030

Li D-D, Ling S-C, Wu K & Luo Z (2019) Identification of Five Key Genes Involved in Intrinsic Apoptotic Pathway From Yellow Catfish Pelteobagrus fulvidraco and Their Transcriptional Responses to High Fat Diet (HFD). Front. Physiol. 10:921. doi: 10.3389/fphys.2019.00921

Mishra, Ashish K., & Mohanty, B. (2008). Histopathological effects of hexavalent chromium in the ovary of a fresh water fish, Channa punctatus (Bloch). Bulletin of Environmental Contamination and Toxicology, 80(6), 507–511. https://doi.org/10.1007/s00128-008-9406-9

Mishra, Ashish K., & Mohanty, B. (2012). Effect of sublethal hexavalent chromium exposure on the pituitary-ovarian axis of a teleost, Channa punctatus (Bloch). Environmental Toxicology, 27(7), 415–422. https://doi.org/10.1002/tox.20654

Mishra, Ashish K., & Mohanty, B. (2014). Acute spill-mimicking exposure effect of hexavalent chromium on the pituitary-ovarian axis of a teleost, Channa punctatus (Bloch). Environmental Toxicology, 29(7), 733–739. https://doi.org/10.1002/tox.21799

Murl Rolland, R. (2000). Ecoepidemiology of the effects of pollution on reproduction and survival of early life stages in teleosts. Fish and Fisheries, 1(1), 41–72. https://doi.org/10.1046/j.1467-2979.2000.00006.x

Nakamoto, M., Matsuda, M., Wang De-Shou, Nagahama, Y., Shibata, N. (2006). Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes. Biochemical and Biophysical Research Communications 344: 353–361. doi:10.1016/j.bbrc.2006.03.137

Nakamura, M., Kuwana, T., Miyayama, Y., & Fujimoto, T. (1988). Extragonadal distribution of primordial germ cells in the early chick embryo. The Anatomical Record, 222(1), 90–94. https://doi.org/10.1002/ar.1092220113

Nazir, F., Narejo, N. T., Naeem, M., & Shaikh, S. A. (2012). Toxic effect of chromium on liver of Cyprinid Fish, Cyprinus Carpio. Sindh University Research Journal-SURJ (Science Series), 44(4).

Nisha, J. C., Jeya, S. R. R., & Chandran, R. (2016). Acute effect of chromium toxicity on the behavioral response of zebra fish Danio rerio. International journal of plant, animal and environmental sciences, 6(2), 6-14.

Nguyen, L. T. H., & Janssen, C. R. (2002). Embryo-larval toxicity tests with the African catfish (Clarias gariepinus): Comparative sensitivity of endpoints. Archives of Environmental Contamination and Toxicology, 42(2), 256–262. https://doi.org/10.1007/s00244-001-0007-4

Parmentier, H. K., & Timmermanst, L. P. M. (1985). The differentiation of germ cells and gonads during development of carp (Cyprinus carpio L.). A study with anti-carp sperm monoclonal antibodies. In Embryol. exp. Morph (Vol. 90).

Raz, E. (2000). The function and regulation of vasa-like genes in germ-cell development Germ-cell development in vertebrates and invertebrates. http://genomebiology.com/2000/1/3/reviews/1017.

Saito, T. and Psenicka, M. (2015). Novel Technique for Visualizing Primordial Germ Cells in Sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso) BIOLOGY OF REPRODUCTION (2015) 93(4):96, 1–7 DOI 10.1095/biolreprod.115.128314

Sfakianakis, D. G., Renieri, E., Kentouri, M., & Tsatsakis, A. M. (2015). Effect of heavy metals on fish larvae deformities: A review. In Environmental Research (Vol. 137, pp. 246–255). Academic Press Inc. https://doi.org/10.1016/j.envres.2014.12.014

Simanjuntak, S.B.I. & Wijayanti, G.E. (2005). Pengaruh Hormon Untuk Induksi Pemijahan Ikan Nilem (Osteochilus hasselti C.V.). Prosiding Seminar Nasional Biologi dan Akuakultur Berkelanjutan. Fakultas Biologi Universitas Jenderal Soedirman, Purwokerto

Sivakumar, K. K., Stanley, J. A., Arosh, J. A., Pepling, M. E., Burghardt, R. C., & Banu, S. K. (2014). Prenatal exposure to chromium induces early reproductive senescence by increasing germ cell apoptosis and advancing germ cell cyst breakdown in the F1 offspring. Developmental Biology, 388(1), 22–34. https://doi.org/10.1016/j.ydbio.2014.02.003

Solangi, F. N., Shaikh, S. A., & Narejo, N. T. (2012). Toxic Effect of Chromium on Gills Of Cyprinid Fish, Cyprinus Carpio. Sindh University Research Journal-SURJ (Science Series), 44(3).

Stanley, J. A., Lee, J-H, Nithy, T.K., Arosh, J.A., Burghardt, R.C. & Banu, S.K. (2011) Chromium-VI arrests cell cycle and decreases granulosa cell proliferation by down-regulating cyclin-dependent kinases (CDK) and cyclins and up-regulating CDK-Inhibitors. Reprod Toxicol. 32(1): 112–123. doi:10.1016/j.reprotox.2011.05.007.

Taslima, K., Md Al-Emran, Rahman, M.S., Hasan, J., Ferdous, Z., Rohani,M.F.. & Shahjahan, Md. (2022). Impacts of heavy metals on early development, growth and reproduction of fish – A review. Toxicology Reports. 9: 858-868. https://doi.org/10.1016/j.toxrep.2022.04.013

Timmermans, L. P. M., & Taverne, N. (1989). Segregation of primordial germ cells: Their numbers and fate during early development of Barbus conchonius (Cyprinidae, Teleostei) as indicated by 3H?thymidine incorporation. Journal of Morphology, 202(2), 225–237. https://doi.org/10.1002/jmor.1052020209

Tzung, K-W., Goto, R. Saju, J.M., Sreenivasan, R., Saito, T., Arai, K., Yamaha, E., Hossain, S., Calvert, M.E.K. & Orba´n, L. (2015). Early Depletion of Primordial Germ Cells in Zebrafish Promotes Testis Formation. Stem Cell Reports 4: 61–73. http://dx.doi.org/10.1016/j.stemcr.2014.10.011

Van Winkoop, A., Booms, G. H. R., Dulos, G. J., & Timmermans, L. P. M. (1992). Cell&Tissue Research Ultrastructural changes in primordial germ cells during early gonadal development of the common carp (Cyprinus carpio L., Teleostei). In Cell Tissue Res (Vol. 267).

Wang,H., He, L., Pei, Y., Chu, P., Huang, R., Li, Y., Liao,L., Zhu, Z. & Wang, Y. (2016). Cloning and characterization of Bax1 and Bax2 genes of Ctenopharyngodon idellus and evaluation of transcript expression in response to grass carp reovirus infection. Fish Physiology and iochemistry 42:1369–1382

Wijayanti, G. E., Setyawan, P., & Kurniawati, I. D. (2017). A Simple Paraffin Embedded Protocol for Fish Egg, Embryo, and Larvae. Scripta Biologica, 4(2), 85. https://doi.org/10.20884/1.sb.2017.4.2.420

Wijayanti, G.E., Habibah, A.N., Yimastria, S. & Ramadhaningrum, A. (2015). Germline and gonadal development in Osteochilus vittatus. Unpublished manuscript.

Wijayanti, G.E., Hillary, S., Septiani, A., Aulia. A & Sintanora.A.E. (2022). LC50 and Effect of Sublethal Concentration of K2Cr2O7 on Different Developmental Stages of Osteochilus vittatus. Advances in Biological Sciences Research, volume 22 https://dx.doi.org/10.2991/absr.k.220406.042

World Health Organisation (2016). Test procedure for insecticide resistence monitoring in malaria vector mosqitoes 2nd edition. http://apps.who.int/iris/bitstream/handle/10665/250677/9789241511575-eng.pdf;jsessionid=BF0224BD299C1106D83CC74149FFD469?sequence=1

Ye, M. & Ye Chen. 2020. Zebrafish as an emerging model to study gonad development. Computational and Structural Biochemistry Journal. 18:2373-2380. https://doi.org/10.1016/j.csbj.2020.08.025

Zhang, X., Li, M., Ma, H., Liu, X., Shi, H., Li, M. & Wang. D. (2017). Mutation of foxl2 or cyp19a1a Results in Female to Male Sex Reversal in XX Nile Tilapia. Endocrinology, August 2017, 158(8):2634–2647. doi: 10.1210/en.2017-00127




DOI: http://dx.doi.org/10.20884/1.oa.2022.18.2.999

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Lisensi Creative Commons

Omni-Akuatika de Fisheries and Marine Science Faculty - Jenderal Soedirman University est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

Fondé(e) sur une œuvre à www.ojs.omniakuatika.net.
Les autorisations au-delà du champ de cette licence peuvent être obtenues à www.ojs.omniakuatika.net.