Evaluation of commercial Pacific white shrimp Litopenaeus vannamei (Boone, 1931) feeds: growth performance and body carcass analysis

Gestar Rheido, Romi Novriadi, Muhammad Tegar Alif Suhardi, Suharyadi Suharyadi, Sinar Pagi Sektiana, Margono Margono, Mugi Mulyono


Growth performance, survival rate, productivity, and carcass analysis were examined in the whole grow-out production system for Pacific white shrimp Litopenaeus vannamei fed four commercial diets over 15 weeks. Shrimp were held in twelve hapas nets with a size of 2 x 2 x 1 m and installed within the commercial ponds. The shrimp were stocked with the density of 100 shrimp m-2 per net in a completely randomized design (CRD). All feed used in this study was characterized with high protein levels within the range of 40 – 42% labeled as HP A and B; and medium protein levels (30 – 35%), labeled as MP A and B. Based on the proximate and nutritional profile analysis of the diet, the nutritional profile of HP B, MP A and MP B written on the feed bags showed an inconsistent results compared to the results of the test.  Shrimp fed the highest protein level had higher final body weight; feed conversion ratio, thermal growth coefficient, survival rate and average daily growth compared to MP B. Shrimp fed higher protein level also exhibited the lowest feed conversion ratio compared to the group of shrimp fed with medium protein. The results obtained in this study indicated that with small difference in growth rates, especially between HP groups compared with MP A, there is still a chance to re-formulate the diet to produce a cost-effective diet that still fulfill the specific nutrient requirement of the shrimp. Feed did not influence the nutritional deposition of the whole body of shrimp, but it seemed due to the inappropriate drying techniques


Keywords: Protein level, growth, carcass, Litopenaeus vannamei, specific nutrient

Full Text:



Akonor, P., Ofori, H., Dziedzoave, N., Kortei, N., 2016. Drying characteristics and physical and nutritional properties of shrimp meat as affected by different traditional drying techniques. International journal of food science 2016.

Arsad, S., Afandy, A., Purwadhi, A.P., Saputra, D.K., Buwono, N.R., 2017. Studi Kegiatan Budidaya Pembesaran Udang Vaname (Litopenaeus vannamei) dengan Penerapan Sistem Pemeliharaan Berbeda [Study of Vaname Shrimp Culture (Litopenaeus vannamei) in Different Rearing System]. Jurnal Ilmiah Perikanan dan Kelautan 9, 1-14.

Ayisi, C.L., Hua, X., Apraku, A., Afriyie, G., Kyei, B.A., 2017. Recent studies toward the development of practical diets for shrimp and their nutritional requirements. HAYATI Journal of Biosciences 24, 109-117.

Boyd, C.E., Davis, R.P., McNevin, A.A., 2021. Comparison of resource use for farmed shrimp in Ecuador, India, Indonesia, Thailand, and Vietnam. Aquaculture, Fish and Fisheries.

Hauler, R.C., Carter, C.G., 2001. Reevaluation of the quantitative dietary lysine requirements of fish. Reviews in Fisheries Science 9, 133-163.

Hertrampf, J.W., Piedad-Pascual, F., 2012. Handbook on ingredients for aquaculture feeds. Springer Science & Business Media.

Huai, M.-Y., Liu, Y.-J., Tian, L.-X., Deng, S.-X., Xu, A.-L., Gao, W., Yang, H.-J., 2010. Effect of dietary protein reduction with synthetic amino acids supplementation on growth performance, digestibility, and body composition of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture International 18, 255-269.

Jackson, C., Preston, N., Thompson, P.J., Burford, M., 2003. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture 218, 397-411.

Kannadhason, S., Muthukumarappan, K., 2010. Effect of starch sources on properties of extrudates containing DDGS. International Journal of Food Properties 13, 1012-1034.

Kaushik, S.J., 1998. Nutritional bioenergetics and estimation of waste production in non-salmonids. Aquatic Living Resources 11, 211-217.

Kureshy, N., Davis, D.A., 2002. Protein requirement for maintenance and maximum weight gain for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture 204, 125-143.

Lailiyah, U.S., Rahardjo, S., Kristiany, M.G., Mulyono, M., 2018. Produktivitas Budidaya Udang Vaname (Litopenaeus vannamei) Tambak Superintensif di PT. Dewi Laut Aquaculture Kabupaten Garut Provinsi Jawa Barat. Jurnal Kelautan dan Perikanan Terapan (JKPT) 1, 1-11.

Lee, C., Lee, K.-J., 2018. Dietary protein requirement of Pacific white shrimp Litopenaeus vannamei in three different growth stages. Fisheries and Aquatic Sciences 21, 1-6.

Lin, H., Chen, Y., Niu, J., Zhou, C., Huang, Z., Du, Q., Zhang, J., 2015. Dietary methionine requirements of Pacific white shrimp Litopenaeus vannamei, of three different sizes. The Israeli Journal of Aquaculture-Bamidgeh.

Novriadi, R., Albasri, H., Eman, C.M., 2021a. Tinjauan Indikator Kesiapan Produksi Udang Putih Litopenaeus vannamei (Boone, 1931) di Sistem Intensif. Jurnal Sains Akuakultur Tropis 5, 252 - 271.

Novriadi, R., Albasri, H., Eman, C.M., 2021b. Tinjauan Indikator Kesiapan Produksi Udang Putih Litopenaeus vannamei (Boone, 1931) di Sistem Intensif. Sains Akuakultur Tropis: Indonesian Journal of Tropical Aquaculture 5, 252-271.

Novriadi, R., Alfitri, K.N., Supriyanto, S., Kurniawan, R., Deendarlianto, D., Rustadi, R., Wiratni, W., Rahardjo, S., 2020. Pengaruh Padat Tebar dan Penggunaan Injektor Venturi terhadap Laju Pertumbuhan Udang (Litopenaeus Vannamei) dalam Bak Beton. Jurnal Perikanan Universitas Gadjah Mada 22, 141-147.

Novriadi, R., Davis, D.A., 2018. Research update: Development of plant-based diets for Florida pompano Trachinotus carolinus. Aquacultura Indonesiana 19, 47-56.

Novriadi, R., Salze, G., Abebe, A., Hanson, T., Davis, D.A., 2019. Partial or total replacement of fish meal in the diets of Florida pompano Trachinotus carolinus. Aquaculture Research 50, 1527-1538.

NRC, 2011. Nutrient requirements of fish and shrimp. National Academies Press.

Rosas, C., Carrillo, O., 2006. Principales rutas metabólicas, utilización de la energía. Estado actual y perspectivas de la nutrición de los camarones peneidos cultivados en Iberoamérica. México, DF, 61-88.

Rubel, H., Woods, W., Pérez, D., Unnikrishnan, S., Felde, A.Z., Zielcke, S., Lidy, C., Lanfer, C., 2019. A strategic approach to sustainable shrimp production in Thailand: The case for improved economics and sustainability. Boston: Boston Consulting Group.

Shahkar, E., Yun, H., Park, G., Jang, I.-K., kyoung Kim, S., Katya, K., Bai, S.C., 2014. Evaluation of optimum dietary protein level for juvenile whiteleg shrimp (Litopenaeus vannamei). Journal of Crustacean Biology 34, 552-558.

Thakur, K., Patanasatienkul, T., Laurin, E., Vanderstichel, R., Corsin, F., Hammell, L., 2018. Production characteristics of intensive whiteleg shrimp (Litopenaeus vannamei) farming in four Vietnam Provinces. Aquaculture Research 49, 2625-2632.

Tzuc, J.T., Escalante, D.R., Rojas Herrera, R., Gaxiola Cortes, G., Ortiz, M.L.A., 2014. Microbiota from Litopenaeus vannamei: digestive tract microbial community of Pacific white shrimp (Litopenaeus vannamei). SpringerPlus 3, 1-10.

Xie, F., Zeng, W., Zhou, Q., Wang, H., Wang, T., Zheng, C., Wang, Y., 2012. Dietary lysine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture 358, 116-121.

Zhou, Q.-C., Wang, Y.-L., Wang, H.-L., Tan, B.-P., 2013. Dietary threonine requirements of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture 392, 142-147.

DOI: http://dx.doi.org/10.20884/1.oa.2022.18.1.925

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Lisensi Creative Commons

Omni-Akuatika de Fisheries and Marine Science Faculty - Jenderal Soedirman University est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

Fondé(e) sur une œuvre à www.ojs.omniakuatika.net.
Les autorisations au-delà du champ de cette licence peuvent être obtenues à www.ojs.omniakuatika.net.