Wave Energy Potential for Development of Renewable Energy in Riau Archipelago Province
Abstract
Energy and electricity demand in Riau Islands is increasing rapidly due to the fast-growing population, urbanization, industrial development, and economic growth. The limitations of energy and electricity in the Riau Islands caused frequent blackouts. To support the high demand for energy and electricity in the Riau Islands, renewable energy is the most suitable alternative energy solution. Renewable energy is not only playing a key role in providing energy but also providing long-term clean and sustainable energy. We investigated the wave energy potential in the Riau Islands Sea in four different consecutive monsoons (North monsoon, East monsoon, South Monsoon and West Monsoon) using ECMWF data during January 2018 to December 2018 with 0.125o x 0.125o and 6 hourly spatial and temporal resolutions. We extracted bathymetry data from NOAA’s database ETOPO1 and forecasting wave characteristics use the SPM (Shore Protection Manual) method. The potential wave energy simulation from significant wave height (Hs) and energy period (Te) was shown in spatial distribution based on different monsoon. Our studies found that the potential wave energy was higher in north monsoon with maximum spatial of wave power density 3.240 – 3.640 kW.m-1. The east monsoon tended to be lower potential wave energy with dominance of wave power density at 0 – 0.127 kW.m-1.
Â
Keywords: wave power density, potential wave energy, ECWFM, monsoonFull Text:
PDFReferences
Aderinto, T., & Li, H. 2018. Ocean Wave energy converters: Status and challenges. Energies 11: 1–26.
Buchanan, M. 2018. More Energy from Ocean Waves. Physics (Vol. 11).
CERC. 1984. Shore protection manual. Shore protection manual. (Fourth Edi., Vol. I). Washington, DC: U.S. Government Printing Office.
Dupré, A., Drobinski, P., Alonzo, B., Badosa, J., Briard, C., & Plougonven, R. 2020. Sub-hourly forecasting of wind speed and wind energy. Renewable Energy 145: 2373–2379.
Haces-Fernandez, F., Li, H., & Ramirez, D. 2018. Assessment of the potential of energy extracted from waves and wind to supply offshore oil platforms operating in the gulf of Mexico. Energies, 11.
Hayward, J., & Osman, P. 2011. The potential of wave energy. CSIRO.[Online]. Available: http://www. csiro. au/files/files/p10e6. pdf, accessed on, 11: 11.
Ilyas, A., Kashif, S. A. R., Saqib, M. A., & Asad, M. M. 2014. Wave electrical energy systems: Implementation, challenges and environmental issues. Renewable and Sustainable Energy Reviews 40: 260–268.
Kalogeri, C., Galanis, G., Spyrou, C., Diamantis, D., Baladima, F., Koukoula, M., & Kallos, G. 2017. Assessing the European offshore wind and wave energy resource for combined exploitation. Renewable Energy 101: 244–264.
Kamranzad, B. 2018. Persian Gulf zone classification based on the wind and wave climate variability. Ocean Engineering 169: 604–635.
Krohn, Soren, Morthorst, P.-E., Awerbunch, S., Blanco, I., & Hulle, F. Van. 2009. The Economics of Wind Energy. (Søren (editor) Krohn, Ed.)The European Wind Energy Association (Vol. 1).
Lavidas, G., Venugopal, V., & Friedrich, D. 2017. Sensitivity of a numerical wave model on wind re-analysis datasets. Dynamics of Atmospheres and Oceans 77: 1–16.
Manasseh, R., Sannasiraj, S. A., Mcinnes, K. L., Sundar, V., & Jalihal, P. 2017. Integration of wave energy and other marine renewable energy sources with the needs of coastal societies.
Mørk, G., Barstow, S., Kabuth, A., & Pontes, M. T. 2010. ASSESSING THE GLOBAL WAVE ENERGY POTENTIAL ECMWF -European Centre for Medium-Range Weather Forecasts MEDS -Marine Environmental Data Services (Canada) NOAA -National Oceanic and Atmospheric Administration NDBC -National Data Buoy Centre WERATLAS -European. Offshore Mechanics and Arctic Engineering.
Mustapa, M. A., Yaakob, O. B., Ahmed, Y. M., Rheem, C. K., Koh, K. K., & Adnan, F. A. 2017. Wave energy device and breakwater integration: A review. Renewable and Sustainable Energy Reviews 77: 43–58.
Pante, E., & Simon-bouhet, B. 2019. Package ‘ marmap ’ : Import, Plot and Analyze Bathymetric and Topographic Data.
Ruud, K., & Frank, N. 2014. Wave Energy Technology Brief. Future Energy: Improved, Sustainable and Clean Options for our Planet 357–382.
Salter, S. 1973. 2 Looking Back.
Suhana, M. P., Nurjaya, I. W., Natih, N. M. N. 2018. Karakteristik Gelombang Laut Pantai Timur Pulau Bintan Provinsi Kepulauan Riau Tahun 2005-2014. Dinamika Maritim 6(2): 16-19.
Stuart, E. K. 2006. Energizing the Island Community : a Review of Policy Standpoints and Territories. Sustainable Development 14: 139–147.
Sugianto, D. N., Kunarso, Helmi, M., Alifdini, I., Maslukah, L., Saputro, S., Yusuf, M., Sugianto, D. N., Kunarso, Helmi, M., Alifdini, I., & Endrawati, H. 2017. Wave energy reviews in Indonesia. International Journal of Mechanical Engineering and Technology 8: 448–459.
T, J. T., Barve, K. H., Dwarakish, G. S., & Ranganath, L. R. 2015. A Review on Assessment of Wave Energy Potential. National Conference on Futuristic Technology in Civil Engineering for Sustainable Development.
Thorpe, T. W. 1999. A Brief Review of Wave Energy. Technical report ETSU-R120, 200.
Wahyudie, A., Jama, M. A., Susilo, T. B., Saeed, O., Nandar, C. S. A., & Harib, K. 2017. Simple bottom-up hierarchical control strategy for heaving wave energy converters. International Journal of Electrical Power and Energy Systems 87: 211–221.
Zodiatis, G., Galanis, G., Nikolaidis, A., Kalogeri, C., Hayes, D., Georgiou, G. C., Chu, P. C., & Kallos, G. 2014. Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study. Renewable Energy 69: 311–323.
DOI: http://dx.doi.org/10.20884/1.oa.2020.16.3.857

This work is licensed under a Creative Commons Attribution 4.0 International License.
Omni-Akuatika by Fisheries and Marine Science Faculty - Jenderal Soedirman University is licensed under the Creative Commons Attribution 4.0 International License.