Growth Performance of Clown Anemonefish (Amphiprion ocellaris) in Maluku at Optimum Salinity

Henny Fitrinawati, Diana Yulanda Syahailatua, Endang Sri Utami

Abstract


Clown anemonefish (Amphiprion ocellaris) is one of the most popular ornamental coral reefs. The marine ornamental fish trade has increased fishing pressure. It has a considerable impact on the clown anemonefish's declining population. The ability of each fish species to tolerate the salinity is a vital consideration in aquaculture marine organisms as it gives information on primary environmental necessities. This study aimed to analyze the clown anemonefish growth performance by modifying different salinity levels through survival rate, specific growth rate, and feed conversion ratio parameters. The experiment was conducted with a Completely Randomized Design (CRD) to investigate the effect of salinity on clown anemonefish growth performance with six treatments (24, 26, 28, 30, 32, and 35 ppt) and three replications. Water quality parameters in this study observed include pH, temperature, and dissolved oxygen. The clown anemonefish reared with six different salinity treatments for 30 days showed that there was a significantly different effect on SGR (p value = 0.007) but no significant differences in FCR (p value = 0.189) and survival rates (p value = 0.458). The considerable effect of salinity on specific growth rates explains that the amount of energy used in the osmoregulation process disrupts a portion of growth energy. The optimal growth performance of clown anemonefish was in a 24 ppt salinity treatment, accompanied by other water quality parameters such as temperature, dissolved oxygen, and pH, which ranged from 26.5 – 32oC; 4.9 - 5.6 ppm; and 7.9 - 8.2, respectively.

Keywords: Amphiprion ocellaris, clown anemonefish, growth performance, salinity

 


Full Text:

PDF

References


Abdel-Tawwab, M., Hagras, A. E., Elbaghdady, H. A. M., & Monier, M. N. (2015). Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): growth performance, whole-body composition, and innate immunity. Aquaculture International, 23(5), 1261–1274. https://doi.org/10.1007/s10499-015-9882-y

Affandi, R., & Tang, U. M. (2017). Aquatic Animal Physiology. Intimedia.

Amornsakun, T., Srithongthum, S., Promkaew, P., Hassan, A. Bin, Matsubara, H., Takeuchi, Y., Mukai, K., Shimasaki, Y., Oshima, Y., & Suzuki, N. (2019). Effects of water salinity on the egg hatching, growth , and survival of larvae and fingerlings of climbing perch , Anabas testudineus. Journal of the Faculty of Agriculture Kyushu University, 64(2), 281–286. https://doi.org/10.5109/2340923

Azab, A. M., Mousa, M. A., Khalil, N. A., Khalaf-Allh, H. M., & Mabrouk, R. T. (2015). Effect of temperature and salinity on larval growth of the gilthead seabream, Sparus aurata. International Journal of Environmental Science and Engineering (IJESE), 6, 35–46.

Azaza, M., & Dhraief, N. (2020). Modeling the effects of water temperature on growth rates , gastric evacuation and the return of appetite in juvenile nile tilapia , Oreochromis niloticus L. Journal of Agricultural Science, 12(8), 191–201. https://doi.org/10.5539/jas.v12n8p191

Barani, H. K., Dahmardeh, H., Miri, M., & Rigi, M. (2019). The effects of feeding rates on growth performance, feed conversion efficiency and body composition of juvenile snow trout, Schizothorax zarudnyi. Iranian Journal of Fisheries Sciences, 18(3), 507–516. https://doi.org/10.22092/ijfs.2019.118285

Bethke, E., Bernreuther, M., & Tallman, R. F. (2013). Feed efficiency versus feed conversion ratio -- demonstrated on feeding experiments with juvenile cod (Gadus morhua). SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2313137

Biondo, M. V. (2017). Quantifying the trade in marine ornamental fishes into Switzerland and an estimation of imports from the European Union. Global Ecology and Conservation, 11, 95–105. https://doi.org/10.1016/j.gecco.2017.05.006

Boeuf, G., & Payan, P. (2001). How should salinity influence fish growth? Comparative Biochemistry and Physiology, 130(4), 411–423. https://doi.org/10.1016/S1532-0456(01)00268-X

Castel, J., & Tiews, K. (1990). Report of The EIFAC, IUBS and ICES Working Group on Standardization of Metodology in Fish Nutrition Research. 21–23.

Chiu, P. S., Ho, S. W., Huang, C. H., Lee, Y. C., & Lin, Y. H. (2023). Captive reproductive behavior, spawning, and early development of white-barred goby Amblygobius phalaena (Valenciennes, 1837) and examined larval survival and viability at different water temperatures and salinities. Fishes, 8(7). https://doi.org/10.3390/fishes8070364

Craig, S. (2017). Understanding Fish Nutrition , Feeds , and Feeding. Virginia Cooperative Extension, 1–6.

Dhaneesh, K. V., Nanthini Devi, K., Ajith Kumar, T. T., Balasubramanian, T., & Tissera, K. (2012). Breeding, embryonic development and salinity tolerance of skunk clownfish Amphiprion akallopisos. Journal of King Saud University - Science, 24(3), 201–209. https://doi.org/10.1016/j.jksus.2011.03.005

Diansyah, S., Munandar, M., & Afrijal, A. (2016). Rearing of clownfish (Amphiprion ocellaris) on salinity manipulation. Jurnal Perikanan Tropis, 3(1), 54–63. https://doi.org/10.35308/jpt.v3i1.36

Indonesian National Standard. How to Culture Fish, Part 3. Ornamental Fish, Pub. L. No. 8228.3, 7 (2015).

Duncan, D. B. (1955). Multiple Range and Multiple F Tests Stable. Biometrics, 11(1), 1–42. https://doi.org/10.2307/3001478

Effendie, I. (2002). Fisheries Biology (2nd ed.). Yayasan Pustaka Nusatama.

Elvy, J. E., Symonds, J. E., Hilton, Z., Walker, S. P., Tremblay, L. A., & Herbert, N. A. (2023). The relationships between specific dynamic action, nutrient retention and feed conversion ratio in farmed freshwater chinook salmon (oncorhynchus tshawytscha). Journal of Fish Biology, 102(3), 605–618. https://doi.org/10.1111/jfb.15293

Fitrinawati, H., & Utami, E. S. (2023). Growth performance of white snapper (Lates calcarifer) in floating cage system, Tual, Maluku. Journal of Fishery Science and Innovation, 7(2), 158–165. https://doi.org/10.33772/jsipi.v7i2.430

Gomez, K. A., & Gomez, A. A. (1983). Statistical Procedures For Agricultural Research (2nd ed.). John Wiley & Sons.

HARVEST. Helping Address Rural Vulnerabilities and Ecosystem Stability. (2011). Feed Conversion Ratio (FCR): how to calculate it and how it is used. USAID, December, 1–2. www.CambodiaHARVEST.org

Hopkins, K. D. (1992). Reporting Fish Growth: A Review of the Basics. Journal of the World Aquaculture Society, 23(3), 173–179. https://doi.org/10.1111/j.1749-7345.1992.tb00766.x

Isely, J. J., & Grabowski, T. B. (2006). Age and Growth. In C. Guy & Brown ML (Eds.), Analysis and Interpretation of Freshwater Fisheries Data (p. 42). American Fisheries Society.

Lakani, B. F., Sattari, M., & Falahatkar, B. (2013). Effect of different oxygen levels on growth performance, stress response and oxygen consumption in two weight groups of great sturgeon Huso huso. Iranian Journal of Fisheries Sciences, 12(3), 533–549.

Lambert, Y., Dutil, J., & Munro, J. (2011). Effeds of intermediate and low salinity conditions on growth rate and food conversion of atlantic cod. Canadian Journal of Fisheries and Aquatic Sciences, 51(7), 1569–1576.

Le Cren, E. D. (2012). The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). Journal of Animal Ecology, 20(2), 201–219. https://doi.org/https://doi.org/10.2307/1540

Li, J., Huang, K., Huang, L., Hua, Y., Yu, K., & Liu, T. (2020). Effects of dissolved oxygen on the growth performance, haematological parameters, antioxidant responses and apoptosis of juvenile GIFT (Oreochromis niloticus). Aquaculture Research, 51(8), 3079–3090. https://doi.org/10.1111/are.14684

Loka, J. (2015). Importance of Water Quality in Mariculture. Karwar Research Centre of CMFRI, 91–94.

Mabrouk, H. (2011). Effect of reducing water salinity on survival, growth performance, chemical composition and nutrients gain of gilthead sea bream (Sparus aurata) larvae. JKAU: Mar. Sci., 22(1), 15–29. https://doi.org/10.4197/Mar. 22-1.2

Madduppa, H. H., von Juterzenka, K., Syakir, M., & Kochzius, M. (2014). Socio-economy of marine ornamental fishery and its impact on the population structure of the clown anemonefish Amphiprion ocellaris and its host anemones in Spermonde Archipelago, Indonesia. In Ocean and Coastal Management (Vol. 100, pp. 41–50). https://doi.org/10.1016/j.ocecoaman.2014.07.013

Nassar, S. A., Hassan, A. G. A., Badran, M. F., & Abdel-rahim, M. M. (2021). Effects of salinity level on growth performance, feed utilization, and chromatic deformity of the hybrid Red tilapia, Oreochromis niloticus x O. mossambicus. Egyptian Journal of Aquatic Biology & Fisheries, 25(2), 49–61.

Noh, G. E., Rho, S., Chang, Y. J., Min, B. H., & Kim, J. M. (2013). Gene encoding prolactin in cinnamon clownfish Amphiprion melanopus and its expression upon acclimation to low salinities. Aquatic Biosystems, 9(1), 1–10. https://doi.org/10.1186/2046-9063-9-1

Nybakken, J. W. (1988). Marine Biology: An Ecological Approach. Gramedia.

Partridge, G. J., & Jenkins, G. I. (2002). The effect of salinity on growth and survival of juvenile black bream ( Acanthopagrus butcheri ). Aquaculture, 210, 219–230.

Pirarat, N., Pratakpiriya, W., Jongnimitpaiboon, K., Sajjawiriyakul, K., Rodkhum, C., & Chansue, N. (2011). Lymphocystis disease in cultured false clown anemonefish (Amphiprion ocellaris). Aquaculture, 315(3–4), 414–416. https://doi.org/10.1016/j.aquaculture.2011.01.014

Prananingtyas, D., Prayogo, & Rahardja, S. (2019). Effect of different salinity level within water against growth rate, survival rate and FCR of Catfish (Clarias sp.). IOP Conference Series: Earth and Environmental Science, 236(1). https://doi.org/10.1088/1755-1315/236/1/012035

Rao, G. M. M. (1968). Oxygen consumption of rainbow trout (Salmo gairdneri) in relation to activity and salinity. Canadian Journal of Zoology, 46(4), 781–786. https://doi.org/10.1139/z68-108

Rao, M. V, Haq, M. A. B., & Kumar, T. T. A. (2014). Influence of temperature on survival, growth and plasma levels of false percula clown fish, Amphiprion Ocellaris. International Jounal of Science Inventions Today, 3(6), 673–684. https://www.researchgate.net/publication/269934789

Ridanovic, S., Nedic, Z., & Ridanovic, L. (2015). First observation of fish condition from Sava river in Bosnia and Herzegovina. Journal of Survey in Fisheries Sciences, 1(2), 27–32. https://doi.org/10.18331/sfs2015.1.2.4

Ridha, M. T. (2006). A comparative study on the growth, feed conversion and production of fry of improved and non-improved strains of the nile tilapia Oreochromis niloticus. Asian Fisheries Science, 19, 319–329. https://doi.org/10.33997/j.afs.2006.19.4.001

Ross, L. G., & Ross, B. (2008). Anaesthetic and Sedative Techniques for Aquatic Animals (3rd ed.). Wiley-Blackwell.

Saraswat, R., Kouthanker, M., Kurtarkar, S. R., Nigam, R., Naqvi, S. W. A., & Linshy, V. N. (2015). Effect of salinity induced pH/alkalinity changes on benthic foraminifera: A laboratory culture experiment. Estuarine, Coastal and Shelf Science, 153, 96–107. https://doi.org/10.1016/j.ecss.2014.12.005

Schwebel, L. N., Stuart, K., Lowery, M. S., & Wegner, N. C. (2018). Swim bladder inflation failure affects energy allocation, growth, and feed conversion of California Yellowtail (Seriola dorsalis) in aquaculture. Aquaculture, 497(July), 117–124. https://doi.org/10.1016/j.aquaculture.2018.07.050

Setyowati, D. N., Ilyas, A. P., Dermawan, A., & Rahmatullah, S. (2022). Effect of calcium carbonate addition on the growth and feed conversion ratio of gourami (Osphronemus goramy) seed. Jurnal Biologi Tropis, 22(1), 194–199. https://doi.org/10.29303/jbt.v22i1.3211

Shaughnessy, C. A., Balfry, S. K., & Bystriansky, J. S. (2022). The isosmotic point as critical salinity limit for growth and osmoregulation, but not survival, in the wolf eel Anarrhichthys ocellatus. Fish Physiology and Biochemistry, 48(2), 471–480. https://doi.org/10.1007/s10695-022-01064-6

Shuang-Yao, W., Zhi-Qiang, J., Ming-Guang, M., Shou-Kang, M., Yang, S., & You-Zhen, S. (2018). Effects of seawater pH on survival, growth, energy budget and oxidative stress parameters of juvenile turbot Scophthalmus maximus. Iranian Journal of Fisheries Sciences, 17(4), 675–689. https://doi.org/10.22092/ijfs.2018.116814

Soewandhi, M., Waspodo, S., & Damayanti, A. D. (2015). Tingkat kelangsungan hidup dan pertumbuhan benih ikan badut Amphiprion ocellaris pada media bersalinitas rendah. Jurnal Perikanan Unram, 7, 37–43.

Susanti, H., & Mukti, A. T. (2020). Studi awal : persentase penetasan dan performa pertumbuhan benih ikan clown ( Amphiprion percula ). Jurnal Biosains Pascasarjana, 22(1), 20–28.

Syazili, A., Samadan, G. M., Ahmad, K., Senen, J., & Irfan, M. (2022). Effect of increasing temperature on growth performance and survival rate clownffish (Ampihiprion ocellaris). AGRIKAN - Journal of Fisheries Agribusiness, 15(2), 683–688. https://doi.org/10.52046/agrikan.v15i2.683-688

Teletchea, F. (2021). Fish domestication in aquaculture: 10 unanswered questions. Animal Frontiers, 11(3), 87–91. https://doi.org/10.1093/af/vfab012

Tuwo, A., Yasir, I., Bestari, A. D., Yanti, A., Aprianto, R., & Tresnati, J. (2021). High salinity effect on mortality of sandfish Holothuria scabra (Jaeger, 1833). IOP Conference Series: Earth and Environmental Science, 763(1). https://doi.org/10.1088/1755-1315/763/1/012019

Uthaya, S. M., Balamurugan, J., Kumar, T. T. A., & Badhul, H. M. A. (2014). Domestication of anemone fishes with high fecundity and spawning efficiency under captive condition for indian scenario. Theriogenology Insight - An International Journal of Reproduction in All Animals, 4(1), 9. https://doi.org/10.5958/j.2277-3371.4.1.002

Vandeputte, M., Corraze, G., Doerflinger, J., Enez, F., Clota, F., Terrier, F., Horat, M., Larroquet, L., Petit, V., Haffray, P., Skiba-Cassy, S., & Dupont-Nivet, M. (2022). Realised genetic gains on growth, survival, feed conversion ratio and quality traits after ten generations of multi-trait selection in rainbow trout Oncorhynchus mykiss, fed a standard diet or a “future” fish-free and soy-free diet. Aquaculture Reports, 27(March). https://doi.org/10.1016/j.aqrep.2022.101363

Velasco-Blanco, G., Re, A. D., Díaz, F., Ibarra-Castro, L., Abdo de la Parra, M. I., Rodríguez-Ibarra, L. E., & Rosas, C. (2019). Thermal preference, tolerance, and thermal aerobic scope in clownfish Amphiprion ocellaris (Cuvier, 1830) predict its aquaculture potential across tropical regions. International Aquatic Research, 11(2), 187–197. https://doi.org/10.1007/s40071-019-0228-7

Venkatachalam, S., Kandasamy, K., Krishnamoorthy, I., & Narayanasamy, R. (2018). Survival and growth of fish (Lates calcarifer) under integrated mangrove-aquaculture and open-aquaculture systems. Aquaculture Reports, 9(October 2017), 18–24. https://doi.org/10.1016/j.aqrep.2017.11.004

Ye, L., Yang, S.-Y., Zhu, X.-M., Liu, M., Lin, J.-Y., & Wu, K.-C. (2011). Effects of temperature on survival, development, growth and feeding of larvae of Yellowtail clownfish Amphiprion clarkii (Pisces: Perciformes). Acta Ecologica Sinica, 31(5), 241–245. https://doi.org/10.1016/j.chnaes.2011.06.003

Young, T., Laroche, O., Walker, S. P., Miller, M. R., Casanovas, P., Steiner, K., Esmaeili, N., Zhao, R., Bowman, J. P., Wilson, R., Bridle, A., Carter, C. G., Nowak, B. F., Alfaro, A. C., & Symonds, J. E. (2023). Prediction of Feed Efficiency and Performance-Based Traits in Fish via Integration of Multiple Omics and Clinical Covariates. 1–22.

Zannotti, M., & Giovannetti, R. (2015). Kinetic evidence for the effect of salts on the oxygen solubility using laboratory prototype aeration system. Journal of Molecular Liquids, 211, 656–666. https://doi.org/10.1016/j.molliq.2015.07.063




DOI: http://dx.doi.org/10.20884/1.oa.2024.20.1.1098

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Lisensi Creative Commons

Omni-Akuatika by Fisheries and Marine Science Faculty - Jenderal Soedirman University is licensed under the Creative Commons Attribution 4.0 International License.

Based on a work at www.ojs.omniakuatika.net.
Permissions beyond the scope of this license may be obtained at