Vertical Mixing in The Onshore Region of The Northwestern Maluku Sea, Indonesia
Abstract
Spatio-temporal dynamics of vertical mixing in the northwestern Maluku Sea were quantified using the Thorpe Method from archived CTD datasets collected during the expedition of Baruna Jaya VIII RCO-LIPI on November 12–13, 2000. The turbulent kinetic energy (TKE) dissipation rate and vertical eddy diffusivity values inspected the variability of mixing properties. Higher values for both parameters were found at the shallower bathymetry, which is less than 1000 m deep. This suggests that the water column is vertically unstable as a result of being often subjected to internal solitary wave (ISW) breaking events. The strong temporal variability observed from the density profile also indicated a strong impact on internal tide activity. There was temporal fluctuation of the TKE dissipation rate as well as vertical eddy diffusivity values following semidiurnal periodicity, with typical variability up to one order of magnitude for both the dissipation and diffusivity. The range of fluctuation is [6.8×10-8 ? 9.3×10-7] W kg-1 and [1.5×10-5 – 5.4×10-3] m2s-1, respectively in the upper 200 m depth. This water generated a high dissipation rate and vertical diffusivity when regularly exposed to internal solitary waves breaking from the Lifamatola Passage.
Keywords: mixing properties, CTD data, turbulent kinetic energy, vertical eddy diffusivity
Full Text:
PDFReferences
Adhyatma, D., Atmadipoera, A. S., Naulita, Y., Nugroho, D., & Herlisman. (2019). Analysis of turbulent mixing in the Eastern Path of Indonesian Throughflow. IOP Conference Series: Earth and Environmental Science, 278(1), 012003. https://doi.org/10.1088/1755-1315/278/1/012003
Bourgault, D., Kelley, D. E., & Galbraith, P. S. (2008). Turbulence and boluses on an internal beach. Journal of Marine Research, 66(5). https://doi.org/10.1357/002224008787536835
Bouruet-Aubertot, P., Cuypers, Y., Ferron, B., Dausse, D., Ménage, O., Atmadipoera, A., & Jaya, I. (2018). Contrasted turbulence intensities in the Indonesian Throughflow: a challenge for parameterizing energy dissipation rate. Ocean Dynamics, 68(7). https://doi.org/10.1007/s10236-018-1159-3
Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient Inverse Modeling of Barotropic Ocean Tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
Ffield, A., & Gordon, A. L. (1992). Vertical Mixing in the Indonesian Thermocline. Journal of Physical Oceanography, 22(2), 184–195. https://doi.org/10.1175/1520-0485(1992)022<0184:VMITIT>2.0.CO;2
Firdaus, R. (2021). Pencitraan Thermohaline Fine Structure Menggunakan Seismik Refleksi Multikanal Di Laut Maluku. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 13(1), 151–162. https://doi.org/10.29244/jitkt.v13i1.32346
Frants, M., Damerell, G. M., Gille, S. T., Heywood, K. J., MacKinnon, J., & Sprintall, J. (2013). An assessment of density-based finescale methods for estimating diapycnal diffusivity in the southern Ocean. Journal of Atmospheric and Oceanic Technology, 30(11). https://doi.org/10.1175/JTECH-D-12-00241.1
Galbraith, P. S., & Kelley, D. E. (1996). Identifying overturns in CTD profiles. Journal of Atmospheric and Oceanic Technology, 13(3). https://doi.org/10.1175/1520-0426(1996)013<0688:IOICP>2.0.CO;2
Gargett, A., & Garner, T. (2008). Determining Thorpe scales from ship-lowered CTD density profiles. Journal of Atmospheric and Oceanic Technology, 25(9). https://doi.org/10.1175/2008JTECHO541.1
Itoh, S., Kaneko, H., Kouketsu, S., Okunishi, T., Tsutsumi, E., Ogawa, H., & Yasuda, I. (2021). Vertical eddy diffusivity in the subsurface pycnocline across the Pacific. Journal of Oceanography, 77(2), 185–197. https://doi.org/10.1007/s10872-020-00589-9
Koch-Larrouy, A., Atmadipoera, A., van Beek, P., Madec, G., Aucan, J., Lyard, F., Grelet, J., & Souhaut, M. (2015). Estimates of tidal mixing in the Indonesian archipelago from multidisciplinary INDOMIX in-situ data. Deep-Sea Research Part I: Oceanographic Research Papers, 106. https://doi.org/10.1016/j.dsr.2015.09.007
Nagai, T., & Hibiya, T. (2015). Internal tides and associated vertical mixing in the Indonesian Archipelago. Journal of Geophysical Research: Oceans, 120(5). https://doi.org/10.1002/2014JC010592
Nagai, T., Hibiya, T., & Syamsudin, F. (2021). Direct Estimates of Turbulent Mixing in the Indonesian Archipelago and Its Role in the Transformation of the Indonesian Throughflow Waters. Geophysical Research Letters, 48(6). https://doi.org/10.1029/2020GL091731
Osborn, T. R. (1980). Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements. Journal of Physical Oceanography, 10(1). https://doi.org/10.1175/1520-0485(1980)010<0083:eotlro>2.0.co;2
Platt, T., & Sathyendranath, S. (1999). Spatial Structure of Pelagic Ecosystem Processes in the Global Ocean. Ecosystems, 2(5), 384–394. https://doi.org/10.1007/s100219900088
Purwandana, A. (2022). Vertical mixing in the deep region of the Sunda Strait , Indonesia. Oseanologi Dan Limnologi Di Indonesia, 7(1).
Purwandana, A., & Cuypers, Y. (2023). Characteristics of internal solitary waves in the Maluku Sea, Indonesia. Oceanologia, 65(2), 333–342. https://doi.org/https://doi.org/10.1016/j.oceano.2022.07.008
Purwandana, A., Cuypers, Y., Bourgault, D., Bouruet-Aubertot, P., & Santoso, P. D. (2022). Fate of internal solitary wave and enhanced mixing in Manado Bay, North Sulawesi, Indonesia. Continental Shelf Research, 245. https://doi.org/10.1016/j.csr.2022.104801
Purwandana, A., Cuypers, Y., & Bouruet-Aubertot, P. (2021). Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia. Continental Shelf Research, 216. https://doi.org/10.1016/j.csr.2021.104358
Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., & Atmadipoera, A. S. (2020). Spatial structure of turbulent mixing inferred from historical CTD datasets in the Indonesian seas. Progress in Oceanography, 184. https://doi.org/10.1016/j.pocean.2020.102312
Purwandana, A., Iskandar, M. R., Kusmanto, E., Fadli, M., Santoso, P. D., Corvianawatie, C., Muhadjirin, M., Wattimena, M. C., & Zheng, W. (2021). Percampuran vertikal di Perairan Laut Maluku dan Talaud pada bulan Februari 2021. OLDI (Oseanologi Dan Limnologi Di Indonesia), 6(2). https://doi.org/10.14203/oldi.2021.v6i2.363
Sani, I. Y., Atmadipoera, A. S., Purwandana, A., & Syamsudin, F. (2021). Transformation and mixing of North Pacific Water Mass in Sangihe-Talaud in August 2019. IOP Conference Series: Earth and Environmental Science, 944(1). https://doi.org/10.1088/1755-1315/944/1/012053
Setiawan, R. Y., Iskandar, I., Wirasatriya, A., Dwi Susanto, R., Siswanto, E., Pranowo, W. S., Setiawati, M. D., & Mardiansyah, W. (2022). Seasonal and interannual coastal wind variability off the central Maluku Islands revealed by satellite oceanography. Global Nest Journal, 24(1). https://doi.org/10.30955/gnj.004177
Srinivasan, K., McWilliams, J. C., Renault, L., Hristova, H. G., Molemaker, J., & Kessler, W. S. (2017). Topographic and Mixed Layer Submesoscale Currents in the Near-Surface Southwestern Tropical Pacific. Journal of Physical Oceanography, 47(6), 1221–1242. https://doi.org/10.1175/JPO-D-16-0216.1
Stansfield, K., Garrett, C., & Dewey, R. (2001). Probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait. Journal of Physical Oceanography, 31(12). https://doi.org/10.1175/1520-0485(2001)031<3421:TPDOTT>2.0.CO;2
Thorpe, S. A. (1977). Turbulence and mixing in a Scottish Loch. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 286(1334). https://doi.org/10.1098/rsta.1977.0112
Wang, Z., Yin, X., Li, X., Li, Y., Li, R., Yang, Y., Mamuaja, J. M., Pangalila, F., Kalangi, P., Gerung, G., Purwandana, A., Wardana, A. K., Surinati, D., Ismail, M. F. A., Dirhamsyah, D., Arifin, Z., & Yuan, D. (2023). Water Mass Variations in the Maluku Channel of the Indonesian Seas During the Winter of 2018–2019. Journal of Geophysical Research: Oceans, 128(3). https://doi.org/10.1029/2022JC018731
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E., Simmons, H. L., Polzin, K. L., St. Laurent, L. C., Sun, O. M., Pinkel, R., Talley, L. D., Whalen, C. B., Huussen, T. N., Carter, G. S., Fer, I., Waterman, S., Naveira Garabato, A. C., Sanford, T. B., & Lee, C. M. (2014). Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate. Journal of Physical Oceanography, 44(7), 1854–1872. https://doi.org/10.1175/JPO-D-13-0104.1
Webb, D. J., & Suginohara, N. (2001). Vertical mixing in the ocean. Nature, 409(6816), 37. https://doi.org/10.1038/35051171
Yoneyama, K., & Zhang, C. (2020). Years of the Maritime Continent. Geophysical Research Letters, 47(12), e2020GL087182. https://doi.org/https://doi.org/10.1029/2020GL087182
Yuan, D., Li, X., Wang, Z., Li, Y., Wang, J., Yang, Y., Hu, X., Tan, S., Zhou, H., Wardana, A. K., Surinati, D., Purwandana, A., Ismail, M. F. A., Avianto, P., Dirhamsyah, D., Arifin, Z., & Von Storch, J. S. (2018). Observed transport variations in the Maluku Channel of the Indonesian seas associated with western boundary current changes. Journal of Physical Oceanography, 48(8). https://doi.org/10.1175/JPO-D-17-0120.1
Yuan, D., Yin, X., Li, X., Corvianawatie, C., Wang, Z., Li, Y., Yang, Y., Hu, X., Wang, J., Tan, S., Surinati, D., Purwandana, A., Wardana, A. K., Ismail, M. F. A., Budiman, A. S., Bayhaqi, A., Avianto, P., Santoso, P. D., Kusmanto, E., … Pratt, L. J. (2022). A Maluku Sea intermediate western boundary current connecting Pacific Ocean circulation to the Indonesian Throughflow. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29617-6
DOI: http://dx.doi.org/10.20884/1.oa.2023.19.2.1075
This work is licensed under a Creative Commons Attribution 4.0 International License.
Omni-Akuatika by Fisheries and Marine Science Faculty - Jenderal Soedirman University is licensed under the Creative Commons Attribution 4.0 International License.