Review: Nutritional Value and Health Benefit of Sea Urchin
Abstract
Varieties of sea urchins can be found in the Indonesian`s ocean. Empirically, Indonesian citizens have been used it as food and medicine. Research about sea urchins had been conducted to give scientific evidence for further usage.  This article will provide information about biological structure, nutritional value, and biological activities of sea urchins. The habitat and morphological structure will be described. Nutritional compound that had been identified from sea urchin are carbohydrate, essential amino acid, essential fatty acid, vitamin, carotenoid, mineral, and albumin. Sea urchin also contained some bioactive compound such as polysaccharides, sulphated polysaccharide, and fucoidan. Traditionally, sea urchins have been used as antiinflammation, antimicrobial, antioxidant, anticancer, anti-fatigue, antidiabetic, and anti-allergic agent. Several biological activities that have been proved scientifically are antioxidant, anticancer, antimicrobial, antiinflammation and anti-haemolytic activity either from the extract or bioactive compound. Therefore it can be concluded that sea urchin have numerous potential bioactive compounds that can be developed into pharmaceutical  and/or nutraceutical product.
Â
Keywords: Sea urchin, morphology, nutrition, bioactivities, bioactive compound.
Full Text:
PDFReferences
Abubakar, L., Mwangi, C., Uku, J., & Ndirangu, S. (2012). Antimicrobial activity of various extracts of the sea urchin Tripneustes gratilla (Echinoidea). African Journal of Pharmacology and Therapeutics, 1(1), 19–23.
Agnello, M. (2017). Introductory Chapter: Sea Urchin—Knowledge and Perspectives. In Sea Urchin (p. Ch. 1). IntechOpen. https://doi.org/10.5772/intechopen.70415
Archana, A., & Babu, K. R. (2016). Nutrient composition and antioxidant activity of gonads of sea urchin Stomopneustes variolaris. Food Chemistry, 197, 597–602. https://doi.org/10.1016/j.foodchem.2015.11.003
Bragadeeswaran, S., Kumaran, N. S., Sankar, P. P., & Prabahar, R. (2013). Research Article Bioactive potential of sea urchin Temnopleurus toreumaticus from Devanampattinam, Southeast coast of India. Journal of Pharmacy and Alternative Medicine, 2(3), 9–17.
Chen, G., Xiang, W.-Z., Lau, C.-C., Peng, J., Qiu, J.-W., Chen, F., & Jiang, Y. (2010). A comparative analysis of lipid and carotenoid composition of the gonads of Anthocidaris crassispina, Diadema setosum and Salmacis sphaeroides. Food Chemistry, 120(4), 973–977. https://doi.org/10.1016/j.foodchem.2009.11.034
Cirino, P., Brunet, C., Ciaravolo, M., Galasso, C., Musco, L., Vega Fernández, T., Sansone, C., & Toscano, A. (2017). The Sea Urchin Arbacia lixula: A Novel Natural Source of Astaxanthin. Marine Drugs, 15(6), 187. https://doi.org/10.3390/md15060187
Fabbrocini, A., & D’Adamo, R. (2011). Gametes and embryos of sea urchins (Paracentrotus lividus, Lmk., 1816) reared in confined conditions: Their use in toxicity bioassays. Chemistry and Ecology, 27(sup2), 105–115. https://doi.org/10.1080/02757540.2011.625931
FAO. (2010). Fishery and aquaculture statistics. Food and Agriculture Organization of the United Nations.
Francis, P., & Chakraborty, K. (2020a). An anti-inflammatory salmachroman from the sea urchin Salmacis bicolor: A prospective duel inhibitor of cyclooxygenase-2 and 5-lipoxygenase. Natural Product Research, 1–10. https://doi.org/10.1080/14786419.2020.1781115
Francis, P., & Chakraborty, K. (2020b). Anti-inflammatory polyoxygenated furanocembranoids, salmacembranes A–B from the sea urchin Salmacis bicolor attenuate pro-inflammatory cyclooxygenases and lipoxygenase. Medicinal Chemistry Research, 29(11), 2066–2076. https://doi.org/10.1007/s00044-020-02620-6
Grimmig, B., Kim, S.-H., Nash, K., Bickford, P. C., & Douglas Shytle, R. (2017). Neuroprotective mechanisms of astaxanthin: A potential therapeutic role in preserving cognitive function in age and neurodegeneration. GeroScience, 39(1), 19–32. https://doi.org/10.1007/s11357-017-9958-x
Hall, J. A., Grainger, J. R., Spencer, S. P., & Belkaid, Y. (2011). The role of retinoic acid in tolerance and immunity. Immunity, 35(1), 13–22. https://doi.org/10.1016/j.immuni.2011.07.002
Harris, L. G., & Eddy, S. D. (2015). Sea Urchin Ecology and Biology. In Echinoderm Aquaculture (pp. 1–24). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119005810.ch1
Jiao, H., Shang, X., Dong, Q., Wang, S., Liu, X., Zheng, H., & Lu, X. (2015). Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities. Marine Drugs, 13(9), 5882–5900. https://doi.org/10.3390/md13095882
Kato, S., & Schroeter, S. C. (1985). Biology of the Red Sea Urchin, Strongylocentrotus franciscanus, and Its Fishery in California. In Commercial Fisheries Review (Vol. 47, pp. 1–20).
Kazemi, S., Heidari, B., & Rassa, M. (2016). Antibacterial and hemolytic effects of aqueous and organic extracts from different tissues of sea urchin Echinometra mathaei on pathogenic streptococci. International Aquatic Research, 8(4), 299–308. https://doi.org/10.1007/s40071-016-0143-0
Kelly, M. S., & Symonds, R. C. (2013). Chapter 11—Carotenoids in Sea Urchins. In J. M. Lawrence (Ed.), Developments in Aquaculture and Fisheries Science (Vol. 38, pp. 171–177). Elsevier. https://doi.org/10.1016/B978-0-12-396491-5.00011-3
Kim, E.-K., Kwon, K.-B., Shin, B.-C., Seo, E.-A., Lee, Y.-R., Kim, J.-S., Park, J.-W., Park, B.-H., & Ryu, D.-G. (2005). Scopoletin induces apoptosis in human promyeloleukemic cells, accompanied by activations of nuclear factor kappaB and caspase-3. Life Sciences, 77(7), 824–836. https://doi.org/10.1016/j.lfs.2005.02.003
Li, C., Haug, T., Moe, M. K., Styrvold, O. B., & Stensvåg, K. (2010). Centrocins: Isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Developmental and Comparative Immunology, 34(9), 959–968. https://doi.org/10.1016/j.dci.2010.04.004
Mann, J., & Truswell, S. (Eds.). (2017). Essentials of Human Nutrition (Fifth Edition). Oxford University Press.
Mocchegiani, E., Costarelli, L., Giacconi, R., Malavolta, M., Basso, A., Piacenza, F., Ostan, R., Cevenini, E., Gonos, E. S., Franceschi, C., & Monti, D. (2014). Vitamin E–gene interactions in aging and inflammatory age-related diseases: Implications for treatment. A systematic review. Ageing Research Reviews, 14, 81–101. https://doi.org/10.1016/j.arr.2014.01.001
Mora, J. R., Iwata, M., & von Andrian, U. H. (2008). Vitamin effects on the immune system: Vitamins A and D take centre stage. Nature Reviews. Immunology, 8(9), 685–698. https://doi.org/10.1038/nri2378
Nishioka, D., Marcell, V., Cunningham, M., Khan, M., Von Hoff, D. D., & Izbicka, E. (2003). The Use of Early Sea Urchin Embryos in Anticancer Drug Testing. In J. K. Buolamwini & A. A. Adjei (Eds.), Novel Anticancer Drug Protocols (pp. 265–276). Humana Press. https://doi.org/10.1385/1-59259-380-1:265
Powell, C., Hughes, A. D., Kelly, M. S., Conner, S., & McDougall, G. J. (2014). Extraction and identification of antioxidant polyhydroxynaphthoquinone pigments from the sea urchin, Psammechinus miliaris. LWT - Food Science and Technology, 59(1), 455–460. https://doi.org/10.1016/j.lwt.2014.05.016
Qin, L., Zhu, B.-W., Zhou, D.-Y., Wu, H.-T., Tan, H., Yang, J.-F., Li, D.-M., Dong, X.-P., & Murata, Y. (2011). Preparation and antioxidant activity of enzymatic hydrolysates from purple sea urchin (Strongylocentrotus nudus) gonad. LWT - Food Science and Technology, 44(4), 1113–1118. https://doi.org/10.1016/j.lwt.2010.10.013
Sahara, H., Hanashima, S., Yamazaki, T., Takahashi, S., Sugawara, F., Ohtani, S., Ishikawa, M., Mizushina, Y., Ohta, K., Shimozawa, K., Gasa, S., Jimbow, K., Sakaguchi, K., Sato, N., & Takahashi, N. (2002). Anti-tumor effect of chemically synthesized sulfolipids based on sea urchin’s natural sulfonoquinovosylmonoacylglycerols. Japanese Journal of Cancer Research: Gann, 93(1), 85–92. https://doi.org/10.1111/j.1349-7006.2002.tb01204.x
Shamsuddin, A. A. L. H., & Noraznawati, I. (2010). Anti-Bacterial Activity of Three Species of Sea Urchin Extracts from Pulau Bidong, Terengganu. Universiti Malaysia Terengganu (UMT). https://scholar.google.com/scholar_lookup?title=Anti-Bacterial
Shang, X.-H., Liu, X.-Y., Zhang, J.-P., Gao, Y., Jiao, B.-H., Zheng, H., & Lu, X.-L. (2014). Traditional Chinese medicine—Sea urchin. Mini Reviews in Medicinal Chemistry, 14(6), 537–542. https://doi.org/10.2174/1389557514666140529224147
Shushizadeh, M. R., Beigi Nasiri, M., Ameri, A.-G., Rajabzadeh Ghatrami, E., & Tavakoli, S. (2019). Preparation of the Persian Gulf Echinometra mathaei Organic Extracts and Investigation of Their Antibacterial Activity. Jundishapur Journal of Natural Pharmaceutical Products, 14(4), Article 4. https://doi.org/10.5812/jjnpp.57093
Solstad, R. G., Li, C., Isaksson, J., Johansen, J., Svenson, J., Stensvåg, K., & Haug, T. (2016). Novel Antimicrobial Peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the Edible Sea Urchin Echinus esculentus Have 6-Br-Trp Post-Translational Modifications. PLOS ONE, 11(3), e0151820. https://doi.org/10.1371/journal.pone.0151820
Sousa, L. M. A., Monte Neto, R. L., Schmidt, D. F. N., & Oliveira, M. R. (2009). Anti-mitotic activity towards sea urchin eggs of dichloromethane fraction obtained from Allamanda schottii Pohl (Apocynaceae). Revista Brasileira de Farmacognosia, 19, 349–352. http://www.scielo.br/j/rbfar/a/jtCPCyLfbt8WthnXKyskWBn/?lang=en
Thao, N. P., Luyen, B. T. T., Kim, E. J., Kang, J. I., Kang, H. K., Cuong, N. X., Nam, N. H., Kiem, P. V., Minh, C. V., & Kim, Y. H. (2015). Steroidal constituents from the edible sea urchin Diadema savignyi Michelin induce apoptosis in human cancer cells. Journal of Medicinal Food, 18(1), 45–53. https://doi.org/10.1089/jmf.2013.3105
Toha, A. H. A., Sumitro, S. B., Hakim, L., Widodo, N., Binur, R., Suhaemi, S., & Anggoro, A. W. (2017). Review: Biology of the commercially used sea urchin Tripneustes gratilla (Linnaeus, 1758) (Echinoidea: Echinodermata). Indo Pacific Journal of Ocean Life, 1(1), 1–10. https://doi.org/10.13057/oceanlife/o010101
Vasanthi, H. R., Parameswari, R. P., & Das, D. K. (2012). Multifaceted role of tocotrienols in cardioprotection supports their structure: Function relation. Genes & Nutrition, 7(1), 19–28. https://doi.org/10.1007/s12263-011-0227-9
Verachia, W., Niven, B., & Bremer, P. J. (2012). The effect of postharvest handling and processing on sea urchin (Evechinus chloroticus) gonad quality. International Journal of Food Science & Technology, 47(12), 2545–2553. https://doi.org/10.1111/j.1365-2621.2012.03133.x Citations: 1
Walker, C. W., & Lesser, M. P. (1998). Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis: Implications for aquaculture. Marine Biology, 132(4), 663–676. https://doi.org/10.1007/s002270050431
Yang, J., Zhao, Z., Hu, K., Zhou, C., Wang, Y., Song, S., Zhao, J., & Gong, Z. (2020). Strongylocentrotus nudus lipids induce apoptosis in HepG2 cells through the induction of oxidative stress. Food Bioscience, 36, 100621. https://doi.org/10.1016/j.fbio.2020.100621
Yuan, J.-P., Peng, J., Yin, K., & Wang, J.-H. (2011). Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Molecular Nutrition & Food Research, 55(1), 150–165. https://doi.org/10.1002/mnfr.201000414
Yusuf, M., Fitriani Nur, U. A., & Rifai, A. (2020). In vitro antibacterial activity and potential applications in food of sea urchin (Diadema setosum) from Cape of Palette, South Sulawesi. Food Research, 4(6), 2139–2146. https://doi.org/10.26656/fr.2017.4(6).275
Zhou, D., Qin, L., Zhu, B., Li, D., Yang, J., Dong, X., & Murata, Y. (2012). Optimisation of hydrolysis of purple sea urchin (Strongylocentrotus nudus) gonad by response surface methodology and evaluation of in vitro antioxidant activity of the hydrolysate. Journal of the Science of Food and Agriculture, 92(8), 1694–1701. https://doi.org/10.1002/jsfa.5534
Zong, A., Cao, H., & Wang, F. (2012). Anticancer polysaccharides from natural resources: A review of recent research. Carbohydrate Polymers, 90(4), 1395–1410. https://doi.org/10.1016/j.carbpol.2012.07.026
DOI: http://dx.doi.org/10.20884/1.oa.2022.18.S1.1012

This work is licensed under a Creative Commons Attribution 4.0 International License.
Omni-Akuatika by Fisheries and Marine Science Faculty - Jenderal Soedirman University is licensed under the Creative Commons Attribution 4.0 International License.