Environmental DNA Metabarcoding Reveals the Eukaryotes Diversity in Marine Protected Area of Lombok Island, Indonesia

Arief Pratomo, Dietriech Geoffrey Bengen, Neviaty Putri Zamani, Hawis Madduppa


Biodiversity assessment surveys are necessary for establishing conservation areas. However, such surveys are typically expensive, primarily if they cover a large area and take a long time. The survey difficulty increases when applied to cryptic, sparse, and fast-moving organisms. In addition, it requires expertise in taxonomic-biota classification. The breakthrough environmental DNA (eDNA) metabarcoding technique promises to overcome all the hurdles of assessing the potential for marine biodiversity in a non-invasive, rapid, extensive, and more effective way. We evaluated the ability of the eDNA survey to reveal the potential diversity and character of marine eukaryotes in the Lombok Island Marine Protected Area. A sampling of seawater and sediment eDNA in pore size fractions of 0.4-12 ?m and >12 ?m was carried out in the Core Zone, Non-Core Zone, and Non-Conservation Area, in east, north, and west Lombok, respectively. The detection and classification of eukaryotes using bioinformatics analysis were accomplished following extraction, amplification, and DNA sequencing. We identified 20,478 unique sequences of potential species classified in five kingdoms to 654 marine eukaryotes families. The comparison results show differences in community structure between locations, as well as differences in diversity between media and factions. The eDNA survey can assess marine biodiversity at a macro level and has implications for management in conservation areas.

Keywords: Biodiversity, Marine eukaryotes, environmental DNA, the Primary V9-SSU 18S rRNA gene

Full Text:



Alabia, I. D., Molinos, J. G., Saitoh, S. I., Hirata, T., Hirawake, T., & Mueter, F. J. (2020). Multiple facets of marine biodiversity in the Pacific Arctic under future climate. Science of the Total Environment, 744, 140913. https://doi.org/10.1016/j.scitotenv.2020.140913

Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W., & Huse, S. M. (2009). A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS ONE, 4(7), 1–9. https://doi.org/10.1371/journal.pone.0006372

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(2001), 32–46.

Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics, 17(1), 1–17. https://doi.org/10.1007/s10592-015-0775-4

Beaumont, N. J., Austen, M. C., Atkins, J. P., Burdon, D., Degraer, S., Dentinho, T. P., Derous, S., Holm, P., Horton, T., van Ierland, E., Marboe, A. H., Starkey, D. J., Townsend, M., & Zarzycki, T. (2007). Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach. Marine Pollution Bulletin, 54(3), 253–265. https://doi.org/10.1016/j.marpolbul.2006.12.003

Beger, M., McGowan, J., Treml, E. A., Green, A. L., White, A. T., Wolff, N. H., Klein, C. J., Mumby, P. J., & Possingham, H. P. (2015). Integrating regional conservation priorities for multiple objectives into national policy. Nature Communications, 6(October), 1–8. https://doi.org/10.1038/ncomms9208

Bernhardt, J. R., & O’Connor, M. I. (2021). Aquatic biodiversity enhances multiple nutritional benefits to humans. Proceedings of the National Academy of Sciences of the United States of America, 118(15), 1–11. https://doi.org/10.1073/pnas.1917487118

Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., & Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6(1), 1–17. https://doi.org/10.1186/s40168-018-0470-z

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9

Bylemans, J., Furlan, E. M., Hardy, C. M., McGuffie, P., Lintermans, M., & Gleeson, D. M. (2017). An environmental DNA-based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica). Methods in Ecology and Evolution, 8(5), 646–655. https://doi.org/10.1111/2041-210X.12709

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303

CEA (California Environmental Associates) (2018). Trends in marine resources and fisheries management in Indonesia. In Review.

Cisneros-Montemayor, A. M., Pauly, D., Weatherdon, L. V., & Ota, Y. (2016). A global estimate of seafood consumption by coastal indigenous peoples. PLoS ONE, 11(12), 1–16. https://doi.org/10.1371/journal.pone.0166681

Dayanidhi, D. L., Thomas, B. C., Osterberg, J. S., Vuong, M., Vargas, G., Kwartler, S. K., Schmaltz, E., Dunphy-Daly, M. M., Schultz, T. F., Rittschof, D., Eward, W. C., Roy, C., & Somarelli, J. A. (2021). Exploring the diversity of the marine environment for New anti-cancer compounds. Frontiers in Marine Science, 7(January), 1–17. https://doi.org/10.3389/fmars.2020.614766

De Souza, L. S., Godwin, J. C., Renshaw, M. A., & Larson, E. (2016). Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms. PLoS ONE, 11(10), 1–15. https://doi.org/10.1371/journal.pone.0165273

de Vargas, C., Engelen, S., Hingamp, P., Sieracki, M., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E., Berney, C., Bescot, N., Probert, I., Carmichael, M., Poulain, J., & Romac, S. (2015). Eukaryotic plankton diversity in the sunlit ocean. Science, 348(6237), 1261605-1/11.

Decelle, J., Carradec, Q., Pochon, X., Henry, N., Romac, S., Mahé, F., Dunthorn, M., Kourlaiev, A., Voolstra, C. R., Wincker, P., & de Vargas, C. (2018). Worldwide Occurrence and Activity of the Reef-Building Coral Symbiont Symbiodinium in the Open Ocean. Current Biology, 28(22), 3625-3633.e3. https://doi.org/10.1016/j.cub.2018.09.024

Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D. M., de Vere, N., Pfrender, M. E., & Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26(21), 5872–5895. https://doi.org/10.1111/mec.14350

DiBattista, J. D., Reimer, J. D., Stat, M., Masucci, G. D., Biondi, P., De Brauwer, M., Wilkinson, S. P., Chariton, A. A., & Bunce, M. (2020). Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-64858-9

Doi, H., Uchii, K., Takahara, T., Matsuhashi, S., Yamanaka, H., & Minamoto, T. (2015). Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE, 10(3), 1–11. https://doi.org/10.1371/journal.pone.0122763

Ficetola, G. F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De Barba, M., Gielly, L., Lopes, C. M., Boyer, F., Pompanon, F., Rayé, G., & Taberlet, P. (2015). Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Molecular Ecology Resources, 15(3), 543–556. https://doi.org/10.1111/1755-0998.12338

Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., Knowlton, N., Brainard, R. E., & Caley, M. J. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology, 25(4), 500–505. https://doi.org/10.1016/j.cub.2014.12.022

Fukaya, K., Murakami, H., Yoon, S., Minami, K., Osada, Y., Yamamoto, S., Masuda, R., Kasai, A., Miyashita, K., Minamoto, T., & Kondoh, M. (2021). Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling. Molecular Ecology, 30(13), 3057–3067. https://doi.org/10.1111/mec.15530

Gelis, E. R. E., Kamal, M. M., Subhan, B., Bachtiar, I., Sani, L. M. I., & Madduppa, H. (2021). Environmental biomonitoring of reef fish community structure with eDNA metabarcoding in the Coral Triangle. Environmental Biology of Fishes, 104(8), 887–903. https://doi.org/10.1007/s10641-021-01118-3

Goldberg, C. S., Strickler, K. M., & Pilliod, D. S. (2015). Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. Biological Conservation, 183, 1–3. https://doi.org/10.1016/j.biocon.2014.11.040

Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P. F., Murphy, M. A., Spear, S. F., McKee, A., Oyler-McCance, S. J., Cornman, R. S., Laramie, M. B., Mahon, A. R., Lance, R. F., Pilliod, D. S., Strickler, K. M., Waits, L. P., Fremier, A. K., Takahara, T., Herder, J. E., & Taberlet, P. (2016). Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution, 7(11), 1299–1307. https://doi.org/10.1111/2041-210X.12595

Gray, J. S. (1997). Marine biodiversity: pattterns, threats and conservation needs. Biodiversity and Conservation, 6, 153–175.

Gray, J. S. (2001). Marine Diversity: the Paradigms in Patterns of Species Richness Examined. Scienta Marina, 65(2), 41–56.

Halko, N., Martinsson, P. G., Shkolnisky, Y., & Tygert, M. (2010). An algorithm for the principal component analysis of large data sets. SIAM Journal on Scientific Computing, 33(5), 2580–2594. https://doi.org/10.1137/100804139

Hernawati, Mukmin, A., Tarigan, S., Kurniawan, & Kartawijaya, T. (2020). Proses Pembentukan Kawasan Konservasi Perairan di Provinsi Nusa Tenggara Barat (Issue October). https://www.researchgate.net/publication/344843423%0D

Hoeksema, B. W. (2007). Delineation of the Indo-Malayan Centre of Maximum Marine Biodiversity: The Coral Triangle. In W. Renema (Ed.), Biogeography, Time, and Place: Distributions, Barriers, and Islands (pp. 117–178). Springer. https://doi.org/10.1007/978-1-4020-6374-9_5

Karkarey, R., Arthur, R., Nash, K. L., Pratchett, M. S., Sankaran, M., & Graham, N. A. J. (2022). Spatial decoupling of α and β diversity suggest different management needs for coral reef fish along an extensive mid-oceanic ridge. Global Ecology and Conservation, 36, e02110. https://doi.org/10.1016/j.gecco.2022.e02110

Kim, S.-K. (2015). Handbook of Marine Biotechnology. In S.-K. Kim (Ed.), Kim, S.: Vol. ISBN: 978- (1st ed.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-53971-8

Kruskal, W. H., & Wallis, W. A. (1952). Journal of the American Use of Ranks in One- Criterion Variance Analysis. Journal of The American Statistical Association, August 2014, 37–41. https://doi.org/10.1080/01621459.1952.10483441

Lynch, M. D. J., & Neufeld, J. D. (2015). Ecology and exploration of the rare biosphere. Nature Reviews Microbiology, 13(4), 217–229. https://doi.org/10.1038/nrmicro3400

Madduppa, H., Cahyani, N. K. D., Anggoro, A. W., Subhan, B., Jefri, E., Sani, L. M. I., Arafat, D., Akbar, N., & Bengen, D. G. (2021). eDNA metabarcoding illuminates species diversity and composition of three phyla (chordata, mollusca and echinodermata) across Indonesian coral reefs. Biodiversity and Conservation, 30(11), 3087–3114. https://doi.org/10.1007/s10531-021-02237-0

Malve, H. (2016). Exploring the ocean for new drug developments: Marine pharmacology. Journal of Pharmacy and Bioallied Sciences, 8(2), 83–91. https://doi.org/10.4103/0975-7406.171700

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet, 17(1). https://doi.org/10.14806/ej.17.1.200

Montes, B. E., Lefcheck, J. S., Guerra-castro, E., Klein, E., Simoes, N., Macaya, E. C., Moity, N., Londoño-cruz, E., Helmuth, B., Choi, F., Soto, E. H., Miloslavich, P., & Muller-karger, F. E. (2021). Optimizing large-scale biodiversity sam_pling effort: Toward an unbalanced survey design. Oceanography, 34(2), 80–91. https://doi.org/10.5670/ oceanog.2021.216.

Neefs, J., Peer, Y. Van De, Rijk, P. De, Chapelle, S., Wachter, R. De, Biochemie, D., Uia, U. A., & Antwerp, B.-. (1993). Compilation of small ribosomal subunit RNA structures. Nucleic Acids Research, 21(13), 3025–3049.

Nguyen, N. H., Smith, D., Peay, K., & Kennedy, P. (2015). Parsing ecological signal from noise in next generation amplicon sequencing. New Phytologist, 205(4), 1389–1393. https://doi.org/10.1111/nph.12923

Pearman, J. K., Anlauf, H., Irigoien, X., & Carvalho, S. (2016). Please mind the gap - Visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Marine Environmental Research, 118, 20–30. https://doi.org/10.1016/j.marenvres.2016.04.011

Port, J. A., O’Donnell, J. L., Romero-Maraccini, O. C., Leary, P. R., Litvin, S. Y., Nickols, K. J., Yamahara, K. M., & Kelly, R. P. (2016). Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Molecular Ecology, 25(2), 527–541. https://doi.org/10.1111/mec.13481

Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M., & Gough, K. C. (2014). The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. Journal of Applied Ecology, 51(5), 1450–1459. https://doi.org/10.1111/1365-2664.12306

Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, e00547. https://doi.org/10.1016/j.gecco.2019.e00547

Rusandi, A., Hakim, A., Wiryawan, B., Sarmintohadi, & Yulianto, I. (2021). Development of marine protected area to supporting sustainable fisheries management in Indonesia. Marine Fisheries : Journal of Marine Fisheries Technology and Management, 12(2), 137–147. https://doi.org/10.29244/jmf.v12i2.37047

Sakata, M. K., Yamamoto, S., Gotoh, R. O., Miya, M., Yamanaka, H., & Minamoto, T. (2020). Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environmental DNA, 2(4), 505–518. https://doi.org/10.1002/edn3.75

Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., McVeigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database, 2020(2), 1–21. https://doi.org/10.1093/database/baaa062

Smart, A. S., Tingley, R., Weeks, A. R., Van Rooyen, A. R., & McCarthy, M. A. (2015). Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications, 25(7), 1944–1952. https://doi.org/10.1890/14-1751.1

Socolar, J. B., Gilroy, J. J., Kunin, W. E., & Edwards, D. P. (2016). How should beta-diversity inform biodiversity conservation? Trends in Ecology and Evolution, 31(1), 67–80. https://doi.org/10.1016/j.tree.2015.11.005

Somboonna, N., Wilantho, A., Monanunsap, S., Chavanich, S., Tangphatsornruang, S., & Tongsima, S. (2017). Microbial communities in the reef water at Kham Island, lower Gulf of Thailand. PeerJ, 2017(8), 1–19. https://doi.org/10.7717/peerj.3625

Stoeck, T., Bass, D., Nebel, M., Christen, R., & Meredith, D. (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology, 19, 21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x

Strassburg, B. B. N., Iribarrem, A., Beyer, H. L., Cordeiro, C. L., Crouzeilles, R., Jakovac, C. C., Braga Junqueira, A., Lacerda, E., Latawiec, A. E., Balmford, A., Brooks, T. M., Butchart, S. H. M., Chazdon, R. L., Erb, K. H., Brancalion, P., Buchanan, G., Cooper, D., Díaz, S., Donald, P. F., … Visconti, P. (2020). Global priority areas for ecosystem restoration. Nature, 586(7831), 724–729. https://doi.org/10.1038/s41586-020-2784-9

Suharsono. (2014). Biodiversitas biota laut indonesia (VIII, Issue June 2014). Indonesian Institute of Sciences (LIPI) Pusat Penelitian Oseanografi. https://www.researchgate.net/publication/323309341_Biodiversitas_Biota_Laut_Indonesia

Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D. R., Alberti, A., Cornejo-Castillo, F. M., Costea, P. I., Cruaud, C., D’Ovidio, F., Engelen, S., Ferrera, I., Gasol, J. M., Guidi, L., Hildebrand, F., … Bork, P. (2015). Structure and function of the global ocean microbiome. Science, 348(6237). https://doi.org/10.1126/science.1261359

Turner, C. R., Barnes, M. A., Xu, C. C. Y., Jones, S. E., Jerde, C. L., & Lodge, D. M. (2014). Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution, 5(7), 676–684. https://doi.org/10.1111/2041-210X.12206

Turner, C. R., Uy, K. L., & Everhart, R. C. (2015). Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation, 183, 93–102. https://doi.org/10.1016/j.biocon.2014.11.017

Valsecchi, E., Bylemans, J., Goodman, S. J., Lombardi, R., Carr, I., Castellano, L., Galimberti, A., & Galli, P. (2020). Novel universal primers for metabarcoding environmental DNA surveys of marine mammals and other marine vertebrates. Environmental DNA, 2(4), 460–476. https://doi.org/10.1002/edn3.72

Venter, O., Fuller, R. A., Segan, D. B., Carwardine, J., Brooks, T., Butchart, S. H. M., Di Marco, M., Iwamura, T., Joseph, L., O’Grady, D., Possingham, H. P., Rondinini, C., Smith, R. J., Venter, M., & Watson, J. E. M. (2014). Targeting global protected area expansion for imperiled biodiversity. PLoS Biology, 12(6). https://doi.org/10.1371/journal.pbio.1001891

Veron, J. E. N., DeVantier, L. M., Turak, E., Green, A. L., Kininmonth, S., Stafford-Smith, M., & Peterson, N. (2009). Delineating the Coral Triangle. Galaxea, Journal of Coral Reef Studies, 11(2), 91–100. https://doi.org/10.3755/galaxea.11.91

Wang, Y., Tian, R. M., Gao, Z. M., Bougouffa, S., & Qian, P. (2014). Optimal eukaryotic 18S and universal 16S / 18S Ribosomal RNA primers and their application in a study of symbiosis. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0090053

DOI: http://dx.doi.org/10.20884/1.oa.2022.18.2.1009

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Lisensi Creative Commons

Omni-Akuatika de Fisheries and Marine Science Faculty - Jenderal Soedirman University est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

Fondé(e) sur une œuvre à www.ojs.omniakuatika.net.
Les autorisations au-delà du champ de cette licence peuvent être obtenues à www.ojs.omniakuatika.net.