Organic Feed Enrichment Effects toward Growth Performance and Egg Production of Oithona similis

Diana Chilmawati, Johannes Hutabarat, Sutrisno Anggoro, Suminto Suminto


The optimum condition of culture media and feed diets which fit the necessities of Oithona similis life (ecophysiological) is very important for it to grow and develop in its maximum. The enrichment of O. similis feed can be done by adding fermented organic feed. Providing organic feed with optimum protein content is necessary to support the growth process and reproduction of O. similis. Osmoregulation process of water organism which is influenced by media salinity is related to bioenergetics process as the effort to use feed energy for the growth. This research aimed to examine the effect of different organic feed protein content and to determine the optimum point which may result in the best growth and egg production of O. similis in the optimum condition of culture media. The study used an experimental method with a completely random design consisting of 4 treatments and 4 repetitions each, i.e. O. similis culture with A. 25%; B. 30%; C. 35%; and D. 40% organic feed protein content. The results showed that the difference of protein content in organic feed affects the growth and production of O. similis eggs. The optimum point of protein content in the fermented organic feed is on protein content B, i.e. 30%, which resulted in the best growth performance (70.44 ± 0.43 ind.mL-1 total density, 0.213 ± population growth rate, and 27.38 ± 0.48 eggs.ind-1 egg production. (ttujuan dan pembahasan harus past tense), Tujuan di abstrak minimal harus menggambarkan atau sama denga tujuan di pendahuluan)

Keywords: enrichment, Oithona similis, organic feed, protein, reproduction

Full Text:



Beyrend-Dur, D., Kumar, R., Rao T.R., Souissi S., Cheng S.H., Hwang J.S. 2011. Demographic parameters of adults of Pseudodiaptomus annandalei (copepoda: calanoida): Temperature–salinity and generation effect. Journal of Experimental Marine Biology and Ecology 404: 1–14.

Cappuzo J. M. 1999. Crustacean bioenergetics : The role of environment variables and dietary levels of macronutrient on energetic eggiciencies. In G.D. Pruder et al., eds. Prociding Aquaculture Nutrition, Biochemical and Physiology Approach. Louisiana State University Baton Rouge.

Cheng S., Ka S., Kumar R., Kuo C.S., Hwang J.S. 2011. Effect of salinity, food level, and the presence of microcrustcean zooplankters on the population dynamics of rotifer Brancionus rotundiformis. Hydrobiologia 669: 289-299.

Chilmawati D., Suminto. 2016a. Optimalisasi kultur Oithona sp. melalui pemberian pakan organik yang difermentasi sebagai upaya pengganti artemia untuk peningkatan produksi hatchery larva udang vaname. Laporan Penelitian Hibah Bersaing, 64 p.

Chilmawati D., Suminto. 2016b. The effect of different diet of phytoplankton cells on growth performance of copepod, Oithona sp. in semi-mass culture. Aquatic Procedia 7: 39–45.

Chilmawati D, Hutabarat J., Anggoro S., Suminto. 2019. Biomolecular identification and optimization of growth performance and egg production in Oithona sp. under different salinity culture. AACL Bioflux 12(2): 575-585.

Creswell L. 2010. [Phytoplankton culture for aquaculture feed]. Southern Regional Aquaculture Center, SRAC Publication No. 5004, 16 pp.

Drillet G., Frouel S., Sichlau M.H., Jepsen P.M., Hojgaard J.K., Joarder A.K., Hansen B.W. 2011. Status and recommendation on marine copepod cultivation for use as live feed. Aquaculture 315: 155-166.

Felix N., Brindo R.A.. 2008. Fermented feed ingredients as fish meal replacer in aquafeed production. Dept. of Aquaculture Fisheries College and Research Institute Tamilandu Vetenary and Animal Sciences, University India. Research and Farming Technique 31-33.

Fukusho K.. 1980. Mass production of a copepod, Tigriopus japonicus, in combination culture with a rotifer Brachionus plicatilis, fed-yeast as food source. Bulletin of the Japanese Society and Scientific Fisheries 46(5): 625–629.

Fukusho K., Arakawa T., Watanabe T. 1980. Food value of a copepod, Tigriopus japonicus, cultured with n- yeast for larvae and juveniles of mud Dab Limanda Yokohamae. Bulletin of the Japanese Society and Scientific Fisheries 46(4): 499–503.

Gorokhova E. 2003. Relationship between nucleic and level and egg production rates in Acartia bifilosa implications for growth assessment of copepods in situ. Marine Ecologi Progress Series 262: 163-172.

Gorokhova E., Anna E., Susanna H., Elena N.Z. 2007. Dynamic responses to phytoplankton blooms in the Northem Baltic proper. Marine Ecology Progress Series 349: 213-225.

Holmborn T., Elene G. 2008. Relationship between RNA content and egg production rate in Acartia bifilosa (Copepoda, Calanoida) of different spatial and temporal origin. Marine Biologi 153: 483-491.

Hutabarat J. 2005. [Pakan buatan ramah lingkungan (eco-friendly artificial feed)]. Bahan Ajar. Fisheries and Marine Science Faculty, Diponegoro University, Semarang, 10 pp. [in Indonesian]

Lee K. W., Park H.G., Lee S.M., Kang H.K. 2006. Effect of diets on the growth of the brackish water cyclopoid copoped Paracyclopina nana Smirnov. Aquaculture 256: 346-353.

Molejon O.G.H., Alvarez-Lajonchere L. 2003. Culture experiments with Oithona oculata Farran, 1913 (Copepoda: Cyclopoida), and it’s advantages as food for marine fish larvae. Aquaculture 219: 471–483.

Noyon M., Froneman P.W. 2013 Variability in the egg production rates of the calanoid copepod, Pseudodiaptomus hessei in a South African Estuary in relation to environmental factors. Estuarine, Coastal and Shelf Science 30: 1-11.

Omori M. 1973. Cultivation of marine copepods. Bulletin of Plankton Society of Japan 20(1): 3–11.

Perumal N.V., Rajkumar M., Perumal P., Rajasekar K.T. 2009. Seasonal variations of plankton diversity in the Kaduviyar Estuary, Nagapattinam, Southeast Coast of India. Journal Environmental Biology 30: 1035-1046.

Peterson W.T.P., Kiorboe T. 1991. Copepod egg production, molting and growth rates, and secondary production in the Skagerrak in August 1988. Journal of Plankton Research 13: 131-154.

Rajthilak C., Santhanam P., Anusuya A., Pazhanimuthu A., Ramkumar R., Jeyaraj N., Perumal P. 2014. Laboratory culture and growth population of brackish water harpacticoid copepod, Niktora affinis (Gurney, 1927) under different temperatures, salinity and diets. World Journal of Fish and Marine Sciences 6(1): 72-81

Robinson, E.H., Li, M.H. 2007. Catfish protein nutrition. Tee Fish Site, Sustainable Marine Aquaculture, Online Courses From UMASS BOSTON.

Sampey A., McKinnon A.D., Meekan M.G., McCormick M.I. 2007. Glimpse into guts: Overview of the feeding of larvae of tropical shorefishes. Marine Ecology Progress Series 339: 243-257.

Santhanam P., Perumal P. 2012a. Effect of temperature, salinity and algal food concentration on population density, growth and survival of marine copepod Oithona rigida Giesbrecht. Indian Journal of Marine Science 41: 369-376.

Santhanam P., Perumal P. 2012b. Evaluation of marine copepod Oithona rigida Giesbrecth as live feed for larviculture of Asian seabass Lates calcalifer Bloch with special reference to nutritional value. Indian Journal of Fisheries 59(2): 127-134.

Steffens W. 1989. [Principles of fish nutrition]. Hal Sted Press Advision of John Wiley and Son, New York, 384 pp.

Suminto, Chilmawati D., Harwanto D. 2018. The effect of fermented organic feed on the performance of Oithona sp. in semi-mass culture condition. Omni-Akuatika 14(3): 53-59.

Suminto, Chilmawati D., Susilowati T., Adhinugroho I. 2019. The effects of microalgal diet with enrichment of fermentedorganic matters (tofu waste, rice bran and fish meal) ongrowth and reproduction of Diaphanosoma brachyurum. 4th International Conference on Tropical and Coastal Region Eco Development. IOP Conference Series: Earth and Environmental Science 246 (2019) 012036

Takahashi T., Uchiyama I. 2007. Morphology of the naupliar stages of some Oithona species (copepoda: cyclopoida) occurring in Toyama Bay, Southern Japan Sea. Plankton and Benthos Research 2(1): 12 – 27.

Wang M., O’Rorke R., Nodder S.D., Jeffs A.G. 2014. Nutritional composition of potential zooplankton prey of the spiny lobster phyllosoma (Jasus edeardsii). Marine and Freshwater Research 65: 337-349

Yebra L., Elisa B., Rodrigo A., Veronica P., Albert C., Enric S. 2011. Protein and nucleic acid metabolism as proxies for growth and fitness of Oithona davisae (Copepod, Cyclopioda) early developmental stages. Journal of Experimental Marine Biology and Ecology 406: 87-94

Zamora-Terol S., Swalethorp R., Kjellerup S., Saiz E., Nielsen T.G. 2014. Population dynamics and production of the small copepod Oithona sp. in a subarctic fjord of West Greenland. Polar Biology 37: 95–96


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Lisensi Creative Commons

Omni-Akuatika de Fisheries and Marine Science Faculty - Jenderal Soedirman University est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

Fondé(e) sur une œuvre à
Les autorisations au-delà du champ de cette licence peuvent être obtenues à