The Pattern of Herbivorous Fish Assemblages in The In Western and Eastern Outermost Island Indonesia

Risandi Dwirama Putra, Rikoh Manogar Siringoringo, Muhammad Abrar, Muhammad Abrar, Ni Wayan Purnamasari, Ni Wayan Purnamasari, Agung Dhamar Syakti

Abstract


The herbivorous fishes have been considered as a critical functional group and have capability maintaining coral reef resilience and avoiding coral-algal phase-shifts. The present condition shown, almost in tropical reef location, alga has dominated coral, even in the small outer island. The requirement to conduct comprehensive basic research in studying the patterns and composition of herbivorous fish, especially on the small outer islands. Twelve coral reef sites in eastern Indonesia (Liki Islands) and western Indonesia (Natuna Island) used as a research location for comparing the structure patterns of herbivorous fish communities (diversity, density, and body size) using the Underwater Visual Census (UVC) method. There was different pattern of herbivorous fishes families in Liki Island and Natuna Islands, where Acanthuridae is dominant in eastern Indonesia (Liki Islands), including Ctenochaetus striatus (41,00 ± 11,72 se) individuals/350m2, A. maculiceps (23,33 ± 13,61 se) individuals/350m2, Naso hexacanthus (18,67 ± 6,34 se) individuals/350m2 while Scaridae is dominant in western Indonesia (Natuna island), including Scarus rivulatus (31,67 ± 10,61 se) individuals/350m2, Chlorurus sordidus (30,00 ± 8,52 se) individuals/350m2 and Scarus quoyi (19,00 ± 9,73 se) individuals/350m2. Based on herbivore fishes composition Liki Island has a higher density and biomass compared to Natuna Island.

Keywords: herbivore, fish, coral, small outer island, Indonesia


Full Text:

PDF

References


Adam, T. C., Schmitt, R. J., Holbrook, S. J., Brooks, A. J., Edmunds, P. J., Carpenter, R. C., & Bernardi, G. 2011. Herbivory, connectivity, and ecosystem resilience: Response of a coral reef to a large-scale perturbation. PLoS ONE, 6(8).

Beita-Jiménez, A., Alvarado, J. J., Mena, S., & Guzmán-Mora, A. G. 2019. Benefits of protection on reef fish assemblages in a human impacted region in Costa Rica. Ocean and Coastal Management, 169(July 2018): 165–170.

Bellwood, D. R., Fulton, C. J., & Fulton, J. 2012. Sediment-mediated of herbivory on coral reefs : resilience to suppression Decreasing sea levels and climate rising change ? Limnology and Oceanography, 53(6): 2695–2701.

Bellwood, D. R., Hoey, A. S., & Choat, J. H. 2003. Limited functional redundancy in high diversity systems: Resilience and ecosystem function on coral reefs. Ecology Letters, 6(4): 281–285.

Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. 2004. Confronting the coral reef crisis. Nature, 429(6994): 827–33.

Brown, K. T., Bender-Champ, D., Kubicek, A., van der Zande, R., Achlatis, M., Hoegh-Guldberg, O., & Dove, S. G. 2018. The dynamics of coral-algal interactions in space and time on the southern Great Barrier Reef. Frontiers in Marine Science, 5(MAY): 1–13.

Burke, L., Reytar, K., Spalding, M., & Perry, A. 2011. Reefs at Risk Revisited. Defenders (Vol. 74). Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3150666&tool=pmcentrez&rendertype=abstract

Burkepile, D. E., Allgeier, J. E., Shantz, A. A., Pritchard, C. E., Lemoine, N. P., Bhatti, L. H., & Layman, C. A. 2013. Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Scientific Reports, 3: 19–21.

Burkepile, D. E., & Hay, M. E. 2008. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proceedings of the National Academy of Sciences, 105(42): 16201–16206.

Burkepile, D. E., & Hay, M. E. 2010. Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLoS ONE, 5(1).

Burkepile, D. E., & Hay, M. E. 2018. Coral reefs. Encyclopedia of Ecology, 2: 426–438.

Ceccarelli, D. M., Jones, G. P., & McCook, L. J. 2011. Interactions between herbivorous fish guilds and their influence on algal succession on a coastal coral reef. Journal of Experimental Marine Biology and Ecology, 399(1): 60–67.

Chabanet, P., Bigot, L., Nicet, J. B., Durville, P., Massé, L., Mulochau, T., Russo, C., Tessier, E., & Obura, D. 2016. Coral reef monitoring in the Iles Eparses, Mozambique Channel (2011-2013). Acta Oecologica, 72: 62–71.

Clausing, R. J., Annunziata, C., Baker, G., Lee, C., Bittick, S. J., & Fong, P. 2014. Effects of sediment depth on algal turf height are mediated by interactions with fish herbivory on a fringing reef. Marine Ecology Progress Series, 517: 121–129.

Comeros-Raynal, M. T., Choat, J. H., Polidoro, B. A., Clements, K. D., Abesamis, R., Craig, M. T., Lazuardi, M. E., McIlwain, J., Muljadi, A., Myers, R. F., Nañola, C. L., Pardede, S., Rocha, L. A., Russell, B., Sanciangco, J. C., Stockwell, B., Harwell, H., & Carpenter, K. E. 2012. The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: The parrotfishes and surgeonfishes. PLoS ONE, 7(7).

Cowburn, B., Samoilys, M. A., Osuka, K., Klaus, R., Newman, C., Gudka, M., & Obura, D. 2019. Healthy and diverse coral reefs in Djibouti – A resilient reef system or few anthropogenic threats? Marine Pollution Bulletin, 148(August): 182–193.

Davis, T. R., & Smith, S. D. A. 2017. Proximity effects of natural and artificial reef walls on fish assemblages. Regional Studies in Marine Science, 9: 17–23.

Dromard, C. R., Bouchon-Navaro, Y., Harmelin-Vivien, M., & Bouchon, C. 2015. Diversity of trophic niches among herbivorous fishes on a Caribbean reef (Guadeloupe, Lesser Antilles), evidenced by stable isotope and gut content analyses. Journal of Sea Research, 95: 124–131.

Dubinsky, Z. 2013. Earth System Monitoring. (R. A. Meyers, Ed.)Earth System Monitoring. New York: Springer.

Dwirama Putra, R., Suryanti, A., Kurniawan, D., Pratomo, A., Irawan, H., Said Raja’I, T., Kurniawan, R., Pratama, G., & Jumsurizal. 2018. Responses of herbivorous fishes on coral reef cover in outer island Indonesia (Study Case: Natuna Island). E3S Web of Conferences, 47.

Edinger, E. N., Jompa, J., Limmon, G. V., Widjatmoko, W., & Risk, M. J. 1998. Reef degradation and coral biodiversity in indonesia: Effects of land-based pollution, destructive fishing practices and changes over time. Marine Pollution Bulletin, 36(8): 617–630.

Edwards, C. B., Friedlander, A. M., Green, A. G., Hardt, M. J., Sala, E., Sweatman, H. P., Williams, I. D., Zgliczynski, B., Sandin, S. A., & Smith, J. E. 2013. Global assessment of the status of coral reef herbivorous fishes: Evidence for fishing effects. Proceedings of the Royal Society B: Biological Sciences, 281(1774): 7–11.

Fabricius, K., De’ath, G., McCook, L., Turak, E., & Williams, D. M. B. 2005. Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Marine Pollution Bulletin, 51(1–4): 384–398.

Ferrigno, F., Bianchi, C. N., Lasagna, R., Morri, C., Russo, G. F., & Sandulli, R. 2016. Corals in high diversity reefs resist human impact. Ecological Indicators, 70: 106–113.

Figueroa-Pico, J., Carpio, A. J., & Tortosa, F. S. 2020. Turbidity: A key factor in the estimation of fish species richness and abundance in the rocky reefs of Ecuador. Ecological Indicators, 111(June 2019): 106021.

Floeter, S. R., Halpern, B. S., & Ferreira, C. E. L. 2006. Effects of fishing and protection on Brazilian reef fishes. Biological Conservation, 128(3): 391–402.

Fong, C. R., Frias, M., Goody, N., Bittick, S. J., Clausing, R. J., & Fong, P. 2018. Empirical data demonstrates risk-tradeoffs between landscapes for herbivorous fish may promote reef resilience. Marine Environmental Research, 133(June): 1–5.

Ford, A. K., Eich, A., McAndrews, R. S., Mangubhai, S., Nugues, M. M., Bejarano, S., Moore, B. R., Rico, C., Wild, C., & Ferse, S. C. A. 2018. Evaluation of coral reef management effectiveness using conventional versus resilience-based metrics. Ecological Indicators, 85(November 2017): 308–317.

Fox, R. J., & Bellwood, D. R. 2007. Quantifying herbivory across a coral reef depth gradient. Marine Ecology Progress Series, 339(May): 49–59.

Goatley, C. H. R., & Bellwood, D. R. 2012. Sediment suppresses herbivory across a coral reef depth gradient. Biology Letters, 8(6): 1016–1018.

Goatley, C. H. R., Bonaldo, R. M., Fox, R. J., & Bellwood, D. R. 2016. Sediments and herbivory as sensitive indicators of coral reef degradation. Ecology and Society, 21(1): 1–17.

Graham, N. A. J., Wilson, S. K., Jennings, S., Polunin, N. V. C., Robinson, J., Bijoux, J. P., & Daw, T. M. 2007. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conservation Biology, 21(5): 1291–1300.

Grimsditch, G., Tamelander, J., Mwaura, J., Zavagli, M., Takata, Y., & Gomez, T. 2009. Coral Reef Resilience Assessment of the Pemba Channel Conservation Area, Tanzania. Assessment. Retrieved from http://cmsdata.iucn.org/downloads/pemba_report___final.pdf

Guest, J. R., Vergés, A., Bauman, A. G., Campbell, A. H., Chou, M., Feary, D. A., Low, J. K. Y., Marzinelli, E. M., Tun, K., & Steinberg, P. D. 2016. Examining the relationship between fish herbivore biomass, coral and macroalgal cover on Singapore’s heavily disturbed reefs. PeerJ PrePrints, 1–33.

Harvey, B. J., Nash, K. L., Blanchard, J. L., & Edwards, D. P. 2018. Ecosystem-based management of coral reefs under climate change. Ecology and Evolution, 8(12): 6354–6368.

Hoey, A. S., & Bellwood, D. R. 2008. Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs, 27(1): 37–47.

Hopley, D. 2011. Encyclopedia of Modern Coral Reef: Structure, Form and Process. (D. Hopley, Ed.)Encyclopedia of Modern Coral Reefs, Encyclopedia of Earth Sciences Series. Dordrecht: Springer Netherlands.

Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., & Grosberg, R. 2003. Climate Change , Human Impacts , and the. Science, 301(August): 929–934.

Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J., & Steneck, R. S. 2010. Rising to the challenge of sustaining coral reef resilience. Trends in Ecology and Evolution, 25(11): 633–642.

Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O., McCook, L., Moltschaniwskyj, N., Pratchett, M. S., Steneck, R. S., & Willis, B. 2007. Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change. Current Biology, 17(4): 360–365.

Jayewardene, D. 2009. A factorial experiment quantifying the influence of parrotfish density and size on algal reduction on Hawaiian coral reefs. Journal of Experimental Marine Biology and Ecology, 375(1–2): 64–69.

Johnson, C. N. 2009. Ecological consequences of late quaternary extinctions of megafauna. Proceedings of the Royal Society B: Biological Sciences, 276(1667): 2509–2519.

Jompa, J., & McCook, L. J. 2002. Effects of competition and herbivory on interactions between a hard coral and a brown alga. Journal of Experimental Marine Biology and Ecology, 271(1): 25–39.

Jones, T., Davidson, R. J., Gardner, J. P. A., & Bell, J. J. 2015. Evaluation and optimisation of underwater visual census monitoring for quantifying change in rocky-reef fish abundance. Biological Conservation, 186: 326–336.

Kubicek, A., & Reuter, H. 2016. Mechanics of multiple feedbacks in benthic coral reef communities. Ecological Modelling, 329: 29–40.

Kulbicki, M., Cornuet, N., Vigliola, L., Wantiez, L., Moutham, G., & Chabanet, P. 2010. Counting coral reef fishes: Interaction between fish life-history traits and transect design. Journal of Experimental Marine Biology and Ecology, 387(1–2): 15–23.

Kunzmann, A., & Samsuardi. 2017. A century of change in an Indonesian coral reef: Sluiter’s Brandewijnsbaai (1890) revisited. Annual Research and Review in Biology, 13(3): 1–7.

Leão, Z. M. A. N., Kikuchi, R. K. P., & Oliveira, M. D. M. 2019. The Coral Reef Province of Brazil. World Seas: an Environmental Evaluation (Second Edi., Vol. 1, pp. 813–833). Elsevier Ltd.

Lewis, S. M., & Wainwright, P. C. 1985. Herbivore abundance and grazing intensity on a Caribbean coral reef. Journal of Experimental Marine Biology and Ecology, 87(3): 215–228.

Littler, M. M., Littler, D. S., & Brooks, B. L. 2006. Harmful algae on tropical coral reefs: Bottom-up eutrophication and top-down herbivory. Harmful Algae, 5(5): 565–585.

Marshell, A., & Mumby, P. J. 2012. Revisiting the functional roles of the surgeonfish Acanthurus nigrofuscus and Ctenochaetus striatus. Coral Reefs, 31(4): 1093–1101.

Martin, C. L., Momtaz, S., Jordan, A., & Moltschaniwskyj, N. A. 2016. Exploring recreational fishers’ perceptions, attitudes, and support towards a multiple-use marine protected area six years after implementation. Marine Policy, 73: 138–145.

McClanahan, T. 2002. Ecological statres and the resilience of coral reefs. Nicolas Polunin Terry Done, 6(2): 1–28.

McClanahan, T. R. 2014. Recovery of functional groups and trophic relationships in tropical fisheries closures. Marine Ecology Progress Series, 497: 13–23.

Mcleod, E., Anthony, K. R. N., Mumby, P. J., Maynard, J., Beeden, R., Graham, N. A. J., Heron, S. F., Hoegh-Guldberg, O., Jupiter, S., MacGowan, P., Mangubhai, S., Marshall, N., Marshall, P. A., McClanahan, T. R., Mcleod, K., Nyström, M., Obura, D., Parker, B., Possingham, H. P., Salm, R. V., et al. 2019. The future of resilience-based management in coral reef ecosystems. Journal of Environmental Management, 233(October 2018): 291–301.

McManus, J. W., & Polsenberg, J. F. 2004. Coral-algal phase shifts on coral reefs: Ecological and environmental aspects. Progress in Oceanography, 60(2–4): 263–279.

Medeiros, P., & Grempel, R. 2007. Effects of recreational activities on the fish assemblage structure in a northeastern Brazilian reef. Pan-American Journal …, 2: 288–300. Retrieved from http://www.academia.edu/download/30533393/Medeiros_et_al.__2007.pdf

Mumby, P. J., Dahlgren, C. P., Harborne, A. R., Kappel, C. V., Micheli, F., Brumbaugh, D. R., Holmes, K. E., Mendes, J. M., Broad, K., Sanchirico, J. N., Buch, K., Box, S., Stoffle, R. W., & Gill, A. B. 2006. Fishing, trophic cascades, and the process of grazing on coral reefs. Science, 311(5757): 98–101.

Newman, M. J. H., Paredes, G. A., Sala, E., & Jackson, J. B. C. 2006. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecology Letters, 9(11): 1216–1227.

Nystrom, M., Folke, C., & Moberg, F. 2000. Coral reef disturbance and resilence in a human-dominated environment. Trends in Ecology & Evolution, 15(10): 413–417.

Paddack, M. J., Cowen, R. K., & Sponaugle, S. 2006. Grazing pressure of herbivorous coral reef fishes on low coral-cover reefs. Coral Reefs, 25(3): 461–472.

Pereira, P. H. C., Moraes, R. L., dos Santos, M. V. B., Lippi, D. L., Feitosa, J. L. L., & Pedrosa, M. 2014. The influence of multiple factors upon reef fish abundance and species richness in a tropical coral complex. Ichthyological Research, 61(4): 375–384.

Pinault, M., Bissery, C., Gassiole, G., Magalon, H., Quod, J. P., & Galzin, R. 2014. Fish community structure in relation to environmental variation in coastal volcanic habitats. Journal of Experimental Marine Biology and Ecology, 460: 62–71.

Polunin, N. V. C., & Klumpp, D. W. 1989. Ecological correlates of foraging periodicity in herbivorous reef fishes of the Coral Sea. Journal of Experimental Marine Biology and Ecology, 126(1): 1–20.

Pratchett, M. S., Bridge, T. C. L., Brodie, J., Cameron, D. S., Day, J. C., Emslie, M. J., Grech, A., Hamann, M., Heron, S. F., Hoey, A. S., Hoogenboom, M. O., Lough, J. M., Morrison, T. H., Osborne, K., Read, M. A., Schauble, C., Smithers, S. G., Sweatman, H. P. A., & Waterhouse, J. 2019. Australia’s Great Barrier Reef. World Seas: an Environmental Evaluation (Second Edi., pp. 333–362). Elsevier Ltd.

Putra, M. I. H., Afatta, S., Wilson, J., Muljadi, A., & Yusidarta, I. 2015. Coral Reef Resilience in 17 Islands Marine Recreation Park, Riung – An Assessment of Functional Groups of Herbivorous Fish and Benthic Substrate. Procedia Environmental Sciences, 23(Ictcred 2014): 230–239.

Putra, R. D., Suhana, M. P., Kurniawn, D., Abrar, M., Siringoringo, R. M., Sari, N. W. P., Irawan, H., Prayetno, E., Apriadi, T., & Suryanti, A. 2019. Detection of reef scale thermal stress with Aqua and Terra MODIS satellite for coral bleaching phenomena. AIP Conference Proceedings, 2094(April).

Quimbayo, J. P., Dias, M. S., Kulbicki, M., Mendes, T. C., Lamb, R. W., Johnson, A. F., Aburto-Oropeza, O., Alvarado, J. J., Bocos, A. A., Ferreira, C. E. L., Garcia, E., Luiz, O. J., Mascareñas-Osorio, I., Pinheiro, H. T., Rodriguez-Zaragoza, F., Salas, E., Zapata, F. A., & Floeter, S. R. 2019. Determinants of reef fish assemblages in tropical Oceanic islands. Ecography, 42(1): 77–87.

Ricart, A. M., Sanmartí, N., Pérez, M., & Romero, J. 2018. Multilevel assessments reveal spatially scaled landscape patterns driving coastal fish assemblages. Marine Environmental Research, 140: 210–220.

Rice, M. M., Ezzat, L., & Burkepile, D. E. 2019. Corallivory in the anthropocene: Interactive effects of anthropogenic stressors and corallivory on coral reefs. Frontiers in Marine Science, 5(JAN): 1–14.

Robinson, J. P. W., Baum, J. K., & Giacomini, H. 2016. Trophic roles determine coral reef fish community size structure. Canadian Journal of Fisheries and Aquatic Sciences, 73(4): 496–505.

Rogers, A., Blanchard, J. L., Newman, S. P., Dryden, C. S., & Mumby, P. J. 2018. High refuge availability on coral reefs increases the vulnerability of reef-associated predators to overexploitation. Ecology, 99(2): 450–463.

Rongo, T., & van Woesik, R. 2013. The effects of natural disturbances, reef state, and herbivorous fish densities on ciguatera poisoning in Rarotonga, southern Cook Islands. Toxicon, 64: 87–95.

Roth, F., Saalmann, F., Thomson, T., Coker, D. J., Villalobos, R., Jones, B. H., Wild, C., & Carvalho, S. 2018. Coral reef degradation affects the potential for reef recovery after disturbance. Marine Environmental Research, 142: 48–58.

Roth, F., Stuhldreier, I., Sánchez-Noguera, C., Morales-Ramírez, T., & Wild, C. 2015. Effects of simulated overfishing on the succession of benthic algae and invertebrates in an upwelling-influenced coral reef of Pacific Costa Rica. Journal of Experimental Marine Biology and Ecology, 468: 55–66.

Rotjan, R. D., & Lewis, S. M. 2006. Parrotfish abundance and selective corallivory on a Belizean coral reef. Journal of Experimental Marine Biology and Ecology, 335(2): 292–301.

Ruppert, J. L. W., Travers, M. J., Smith, L. L., Fortin, M. J., & Meekan, M. G. 2013. Caught in the Middle: Combined Impacts of Shark Removal and Coral Loss on the Fish Communities of Coral Reefs. PLoS ONE, 8(9): 1–9.

Russ, G. R. 2003. Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs, 22(1): 63–67.

Sandin, S. A., Sampayo, E. M., & Vermeij, M. J. A. 2008. Coral reef fish and benthic community structure of bonaire and Curaçao, Netherlands Antilles. Caribbean Journal of Science, 44(2): 137–144.

Sheppard, C. R. C. C., Ateweberhan, M., Bowen, B. W., Carr, P., Chen, C. A., Clubbe, C., Craig, M. T., Ebinghaus, R., Eble, J., Fitzsimmons, N., Gaither, M. R., Gan, C.-H. H., Gollock, M., Guzman, N., Graham, N. A. J. J., Harris, A., Jones, R., Keshavmurthy, S., Koldewey, H., Lundin, C. G., et al. 2012. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. (Intergovernmental Panel on Climate Change, Ed.)Aquatic Conservation: Marine and Freshwater Ecosystems, 22(2): 232–261.

Sheppard, C. R. C., Spalding, M., Bradshaw, C., & Wilson, S. 2002. Erosion vs. recovery of coral reefs after 1998 El Niño: Chagos reefs, Indian Ocean. Ambio, 31(1): 40–48.

Souter, D. W., & Lindén, O. 2000. The health and future of coral reef systems. Ocean and Coastal Management, 43(8–9): 657–688.

Teixeira-Neves, T. P., Neves, L. M., & Araújo, F. G. 2016. The development of a preliminary rock reef fish multimetric index for assessing thermal and urban impacts in a tropical bay. Marine Pollution Bulletin, 109(1): 290–300.

Vergés, A., Bennett, S., & Bellwood, D. R. 2012. Diversity among Macroalgae-Consuming Fishes on Coral Reefs: A Transcontinental Comparison. PLoS ONE, 7(9).

Wen, C. K. C., Chen, K. S., Hsieh, H. J., Hsu, C. M., & Chen, C. A. 2013. High coral cover and subsequent high fish richness on mature breakwaters in Taiwan. Marine Pollution Bulletin, 72(1): 55–63.

Wenger, A. S., Fabricius, K. E., Jones, G. P., & Brodie, J. E. 2015. Effects of sedimentation, eutrophication, and chemical pollution on coral reef fishes. Ecology of Fishes on Coral Reefs, (May 2017): 145–153.

Wild, C., Hoegh-Guldberg, O., Naumann, M. S., Colombo-Pallotta, M. F., Ateweberhan, M., Fitt, W. K., Iglesias-Prieto, R., Palmer, C., Bythell, J. C., Ortiz, J. C., Loya, Y., & Van Woesik, R. 2011. Climate change impedes scleractinian corals as primary reef ecosystem engineers. Marine and Freshwater Research, 62(2): 205–215.

Williams, D. M. 1991. Patterns and Processes in the Distribution of Coral Reef Fishes. The Ecology of Fishes on Coral Reefs. ACADEMIC PRESS, INC.

Wilson, S. K., Bellwood, D. R., Choat, J. H., & Furnas, M. J. 2003. Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanography and Marine Biology, Vol 41, 41(January): 279–309.

Wilson, S. K., Graham, N. A. J., Fisher, R., Robinson, J., Nash, K., Chong-Seng, K., Polunin, N. V. C., Aumeeruddy, R., & Quatre, R. 2012. Effect of Macroalgal Expansion and Marine Protected Areas on Coral Recovery Following a Climatic Disturbance. Conservation Biology, 26(6): 995–1004.

Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P., & Polunin, N. V. C. 2006. Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient? Global Change Biology, 12(11): 2220–2234.

Wismer, S., Tebbett, S. B., Streit, R. P., & Bellwood, D. R. 2019. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Science of the Total Environment, 650: 1487–1498.




DOI: http://dx.doi.org/10.20884/1.oa.2020.16.2.805

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Lisensi Creative Commons

Omni-Akuatika de Fisheries and Marine Science Faculty - Jenderal Soedirman University est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

Fondé(e) sur une œuvre à www.ojs.omniakuatika.net.
Les autorisations au-delà du champ de cette licence peuvent être obtenues à www.ojs.omniakuatika.net.