Marine Bioremediation in Indonesia : Die Before Blossom

Agung Dhamar Syakti

Abstract


This critical review highlighted the need to booster an application of the environment biotechnology in order to reduce petroleum hydrocarbons contamination in marine environment.  Marine bioremediation can be promisingly applied when the spills occurred. However, absence of policy support from Indonesian government to endorse the private actor’s liabilities when complying the rehabilitation action was no significance while academic research was still far from establishment of fundamental knowledge in marine bioremediation. Thus, if so, it very likely that bioremediation disciplines and application might “die before blossom” in a country that often confronted by the maritime risk contamination of petroleum hydrocarbons on their marine and coastal area.


References


Alfiansah, Y.R., Adindasari, M., Argarini, M. & Darmayati, Y. (2014). Isolation and Distribution of Crude Oil and Polycyclic Aromatic Hydrocarbon-Degrading Bacteria From. 39, 79–85.

Balasubramanian, V., Natarajan, K., Hemambika, B., Ramesh, N., Sumathi, C.S., Kottaimuthu, R. & Rajesh Kannan, V. (2010). High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Letters in Applied Microbiology, http://dx.doi.org/10.1111/j.1472-765X.2010.02883.x.

Cai, Q., Zhang, B., Chen, B., Zhu, Z., Lin, W. & Cao, T. (2014). Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Marine Pollution Bulletin, 86, 402–410, http://dx.doi.org/10.1016/j.marpolbul.2014.06.039.

Chakraborty, R., Wu, C.H. & Hazen, T.C. (2012). Systems biology approach to bioremediation. Current Opinion in Biotechnology, 23, 483–490, http://dx.doi.org/10.1016/j.copbio.2012.01.015.

Colwell, R.R. (2016). The Gulf of Mexico research initiative: It takes a village. Deep Sea Research Part II: Topical Studies in Oceanography, 129, 2–3.

Darmayati, Y. (2010). Bioremediation of Crude Oil Contaminated Sediment Using Slow Release Fertilizer : Hydrocarbonoclastic Bacteria Population Dynamics. 2, 462–476.

Darmayati, Y. (2009). Development of oil bioremediation research on marine environment in indonesia. Development, 12, 105–110.

Dindar, E., Topaç Şağban, F.O. & Başkaya, H.S. (2015). Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil. International Biodeterioration & Biodegradation, 105, 268–275, http://dx.doi.org/10.1016/j.ibiod.2015.09.011.

Drozdova, S., Ritter, W., Lendl, B. & Rosenberg, E. (2013). Challenges in the determination of petroleum hydrocarbons in water by gas chromatography (hydrocarbon index). Fuel, 113, 527–536, http://dx.doi.org/10.1016/j.fuel.2013.03.058.

Dyer, M., Heiningen, E. Van & Gerritse, J. (2003). A field trial for in-situ bioremediation of 1 , 2-DCA. 70, 315–320, http://dx.doi.org/10.1016/S0013-7952(03)00099-1.

Environmental Minister Decree No. 128. (2003). Tata Cara dan Persyaratan Teknis Pengolahan Limbah MInyak Bumi dan Tanah Terkontaminasi oleh Minyak Bumi Secara Biologis.

Geospatial Information Agency of Indonesia. (2017). Identification of islands and standardization of their names submitted by Indonesia. 11th United Nations Conference on the Standarization of Geographical Names.

Goverment Regulation No. 85. (1999). Peraturan Pemerintah Republik Indonesia 85 Tahun 1999 Tentang Pengelolaan Limbah Bahan Berbahaya Dan Beracun. 1–233, http://jdih.menlh.go.id/pdf/ind/IND-PUU-3-1999-PP No. 85 Tahun 1999.pdf.

Hidayati, N.V., Hilmi, E., Haris, A., Effendi, H., Guiliano, M., Doumenq, P. & Syakti, A.D. (2011). Fluorene removal by biosurfactants producing Bacillus megaterium. Waste and Biomass Valorization, 2, http://dx.doi.org/10.1007/s12649-011-9085-3.

Ivshina, I., Kostina, L., Krivoruchko, A., Kuyukina, M., Peshkur, T., Anderson, P. & Cunningham, C. (2016). Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. Journal of Hazardous Materials, 312, 8–17, http://dx.doi.org/10.1016/j.jhazmat.2016.03.007.

Lui, E., Zhao, H. & Obbard, J.P. (2005). Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. 37, 487–496, http://dx.doi.org/10.1016/j.enzmictec.2004.07.024.

Miguez, C.B., Greer, C.W. & Ingram, J.M. (1993). Purification and Properties of Chlorocatechol 1,2- Dioxygenase from Alcaligenes denitrificans BRI 6011. Can J Microbiol, 39, 1–5, http://dx.doi.org/10.1139/m93-001.

Mohanram, R., Jagtap, C. & Kumar, P. (2016). Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor. Marine Pollution Bulletin, 105, 131–138, http://dx.doi.org/10.1016/J.MARPOLBUL.2016.02.040.

Mrozik, A. & Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, 165, 363–375, http://dx.doi.org/10.1016/j.micres.2009.08.001.

Oh, Y., Sim, D. & Kim, S. (2001). E ects of Nutrients on Crude Oil Biodegradation in the Upper Intertidal Zone. 42, 1367–1372.

Pacwa-Płociniczak, M., Płociniczak, T., Iwan, J., Żarska, M., Chorążewski, M., Dzida, M. & Piotrowska-Seget, Z. (2016). Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. Journal of Environmental Management, 168, 175–184,

http://dx.doi.org/10.1016/j.jenvman.2015.11.058.

Paitan, Y., Biran, D., Biran, I., Shechter, N., Babai, R., Rishpon, J. & Ron, E.Z. (2003). On-line and in situ biosensors for monitoring environmental pollution. 22, 27–33, http://dx.doi.org/10.1016/j.biotechadv.2003.08.014.

Parthipan, P., Elumalai, P., Ting, Y.P., Rahman, P.K.S.M. & Rajasekar, A. (2018). Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX. International Biodeterioration & Biodegradation, 129, 67–80, http://dx.doi.org/10.1016/j.ibiod.2018.01.006.

PWC. (2010). Oil and Gas in Indonesia. Taxation.

Robles-González, I. V., Fava, F. & Poggi-Varaldo, H.M. (2008). A review on slurry bioreactors for bioremediation of soils and sediments. Microbial Cell Factories, 7, 1–16, http://dx.doi.org/10.1186/1475-2859-7-5.

Ron, E.Z. & Rosenberg, E. (2002). Biosurfactants and oil bioremediation. Current Opinion in Biotechnology, 13, 249–252, http://dx.doi.org/10.1016/S0958-1669(02)00316-6.

Rontani, J.-F., Bonin, P., Vaultier, F., Guasco, S. & Volkman, J.K. (2013). Anaerobic bacterial degradation of pristenes and phytenes in marine sediments does not lead to pristane and phytane during early diagenesis. Organic Geochemistry, 58, 43–55, http://dx.doi.org/10.1016/j.orggeochem.2013.02.001.

Rontani, J.-F., Nassiry, M., Guasco, S., Mouzdahir, A. & Bonin, P. (2008). Aerobic metabolism of vitamin E by marine bacteria: Interaction with free radical oxidation (autoxidation) processes. Organic Geochemistry, 39, 676–688, http://dx.doi.org/10.1016/j.orggeochem.2008.02.018.

Roy, A., Dutta, A., Pal, S., Gupta, A., Sarkar, J., Chatterjee, A., Saha, A., Sarkar, P., Sar, P. & Kazy, S.K. (2018). Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresource Technology, 253, 22–32, http://dx.doi.org/10.1016/j.biortech.2018.01.004.

Shekhar, S., Sundaramanickam, A. & Balasubramanian, T. (2015). Biosurfactant producing microbes and their potential applications: A review. Critical Reviews in Environmental Science and Technology, 45, 1522–1554, http://dx.doi.org/10.1080/10643389.2014.955631.

Sheth, R.U., Cabral, V., Chen, S.P. & Wang, H.H. (2016). Manipulating Bacterial Communities by in situ Microbiome Engineering. Trends in Genetics, 32, 189–200, http://dx.doi.org/10.1016/j.tig.2016.01.005.

Syakti, A.D. (2016). Molecular Diagnostic Ratios To Assess the Apportionment of Petroleum Hydrocarbons Contaminantion in Marine Sediment. Molekul, 11, 208, http://dx.doi.org/10.20884/1.jm.2016.11.2.236.

Syakti, A.D., Hidayati, V., Sahri, A. & Doumenq, P. (2013). The Bioremediation Potential of Hydrocarbonoclastic Bacteria Isolated From a Mangrove Contaminated by Petroleum Hydrocarbons on the Cilacap Coast , Indonesia. 37–41, http://dx.doi.org/10.1080/10889868.2012.731446.

Thiel, M., Kaschabek, S.R., Gröning, J., Mau, M. & Schlömann, M. (2005). Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44. Archives of Microbiology, 183, 80–94, http://dx.doi.org/10.1007/s00203-004-0748-3.

Vermelho, A.B., Supuran, C.T. & Guisan, J.M. (2012). Microbial enzyme: Applications in industry and in bioremediation. Enzyme Research, 2012, http://dx.doi.org/10.1155/2012/980681.

Vieira, G.A.L., Magrini, M.J., Bonugli-Santos, R.C., Rodrigues, M.V.N. & Sette, L.D. (2018). Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process. Brazilian Journal of Microbiology, 1–8, http://dx.doi.org/10.1016/j.bjm.2018.04.007.

Whyte, L.G., Bourbonniére, L. & Greer, C.W. (1997). Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane ( alk ) and naphthalene Biodegradation of Petroleum Hydrocarbons by Psychrotrophic Pseudomonas Strains Possessing Both Alkane ( alk ) and Naphthalene ( n.




DOI: http://dx.doi.org/10.20884/1.oa.2018.14.3.584

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Lisensi Creative Commons
Omni-Akuatika de Fisheries and Marine Science Faculty - Jenderal Soedirman University est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

Fondé(e) sur une œuvre à www.ojs.omniakuatika.net.
Les autorisations au-delà du champ de cette licence peuvent être obtenues à www.ojs.omniakuatika.net.